
Sparsity in Adaptive Control
Philippe Preux, Sertan Girgin, INRIA, LIFL, CNRS, University of Lille, France, philippe.preux@inria.fr

Abstract: We investigate methods and algorithms to obtain sparse representations in the context of adaptive control. We are particularly interested in situations in which we look for a control in
an unknown, stochastic, possibly non stationary environments, using no prior knowledge. Here, we present our work based on the use of cascade-correlation networks which yields very sparse
representations, yet keeping the ability to obtain highly performing controls.

1. Approximate Dynamic Programming and Reinforcement Learning

1.1 The situation

Environment

uncertain

partially observable

complex

Reward

Decision maker

Observed state Action

1.2 Formal framework
Given a Markov decision problem:

• a set of instants of decision, t ∈ T
• a set of states x ∈ X (discrete or continuous)
• a set of actions a ∈ A
• a transition function: P(x, a, x′) ≡ Pr[xt+1 = x′|xt = x, at = a]

• a return function: R(x, a, x′) ≡ E[rt+1 = x′|xt = x, at = a] ∈ R
• an objective such as: optimize J(x) ≡

∑
k≥0 γ

krt+k|xt = x, γ ∈ [0, 1)

• everything is stationary.

find: the optimal policy π∗ that optimizes the objective function.
Theorem (Blackwell): in this setting, π∗ is stationary and deterministic: π∗ : X → A: in each
state, there is an optimal action(or possibly, several strictly equivalent optimal actions).

1.3 ADP vs.RL

Approximate dynamic programming (ADP) when the PDM is known,
Reinforcement Learning (RL) when only X and A are known.

1.4 How?

Compute the value function of the optimal policy (ADP and RL): V (x) = max (EJ(x)).
This V is the solution of a non linear equation (Bellman optimality equation) that can be
computed in various ways.
π∗ is easy to deduce from this V .

Compute directly the optimal policy (RL only) by sampling trajectories.

V is obtained asymptotically by solving a series of regression problems: V0  V1  ...Vi  
...V .

1.5 Representation of states

• in real settings, we do not know how to represent states in an “optimal” way, that is, such that
the problem is Markovian, and such that the computational cost is lowered.
• even on toy examples, the Markovian representation may be enriched to get improved

performance:

������������
������������
������������
������������

x

θ

(x, ẋ, θ, θ̇) contains all the necessary information

-800

-700

-600

-500

-400

-300

-200

-100

 0

 100

 0  1000  2000  3000  4000  5000
-800

-700

-600

-500

-400

-300

-200

-100

 0

 100

 0  1000  2000  3000  4000  5000
-800

-700

-600

-500

-400

-300

-200

-100

 0

 100

 0  1000  2000  3000  4000  5000

X = (x, ẋ, θ, θ̇) X = (x, ẋ, θ, θ̇, sin (θ), cos (θ)) X = (x, ẋ, θ, θ̇) and
automatically

discovered features

2. Non Parametric Function Approximation for ADP & RL

2.1 Basics
We use non parametric function approximators to obtain at the same time:
• a sparse approximation of V ,
• a “good” representation of states.

Here, we use cascade-correlation networks:

o

i1

i2

o

i1

h1

i2

o

i1

h1
h2

i2

...
(These 3 figures show how a CCN grows)

The +’s:

• very efficient,
•works quite well in practice.

The -’s:

• not theoretically grounded,
• very difficult to interpret,
• grows but never shrinks.

2.2 Experiments in RL
Results on the inverted pendulum task: (same kind of results for other tasks, such as the
swimmer and the spring cart-pole).

-60
-40
-20

 0
 20
 40
 60
 80

 100
 120
 140

 5  10  15  20  25  30  35  40  45  50  55

av
g.

 to
ta

l r
ew

ar
d

# of basis functions

rbf (5000 samples)
rbf (10000 samples)

5000 samples
10000 samples

-4 -3 -2 -1  0  1  2  3  4-10-8
-6-4-2 0 2 4 6 8 10

-8
-6
-4
-2
 0
 2
 4
 6
 8

 10
 12

      10
       5
       0
      -5

CCN produces a very sparse
representation of the value function,
which yields excellent performance: with
only 10 hidden units, we do better than a
512 RBF-network for instance.

The function being learned.

We obtain the same kind of results in the case of Approximate Dynamic Programming.

3. Conclusion

• very sparse solutions in adaptive control applications,
• very sparse representations along with highly performing policies,
• efficient in terms of computation time,
• difficulty to interpret the representation; lack of theoretical background.

4. Future work

• scalability towards larger problems,
• various issues in control, and the level of approximations required to obtain good policies.

References

[1] S. Girgin and Ph. Preux. Feature discovery in reinforcement learning using genetic programming. In Proc.11th Euro-GP, volume 4971 of LNCS, pages 218–229. Springer, 2008.
[2] S.Girgin and Ph.Preux. Incremental basis function expansion in reinforcement learning using cascade-correlation networks. In Proc. ICML-A, pages 75–82. IEEE Press, 2008.
[3] S. Girgin and Ph. Preux. Basis expansion in natural actor critic methods. In Recent Advances in Reinforcement Learning, volume 5323 of LNAI, pages 111–124. Springer, 2009.
[4] Ph. Preux, S. Girgin, and M. Loth. Feature discovery in approximate dynamic programming. In Proc. IEEE ADPRL, 2009.

Workshop on Sparsity in ML and Statistics, Cumberland Lodge, UK


