Sparsity in Adaptive Control

Philippe Preux, Sertan Girgin, INRIA, LIFL, CNRS, University of Lille, France, philippe.preux@inria.fr

Abstract: We investigate methods and algorithms to obtain sparse representations in the context of adaptive control. We are particularly interested in situations in which we look for a control in an unknown, stochastic, possibly non stationary environments, using no prior knowledge. Here, we present our work based on the use of cascade-correlation networks which yields very sparse representations, yet keeping the ability to obtain highly performing controls.

1. Approximate Dynamic Programming and Reinforcement Learning

1.3 ADP vs.RL

Approximate dynamic programming (ADP) when the PDM is known, **Reinforcement Learning** (RL) when only \mathcal{X} and \mathcal{A} are known.

1.4 How?

Compute the value function of the optimal policy (ADP and RL): $V(x) = \max(\mathbb{E}J(x))$.

This V is the solution of a non linear equation (Bellman optimality equation) that can be computed in various ways.

 π^* is easy to deduce from this V.

Compute directly the optimal policy (RL only) by sampling trajectories.

V is obtained asymptotically by solving a series of regression problems: $V_0 \rightsquigarrow V_1 \rightsquigarrow ... V_i \rightsquigarrow$...V.

1.2 Formal framework

Given a Markov decision problem:

- a set of instants of decision, $t \in T$
- a set of states $x \in \mathcal{X}$ (discrete or continuous)
- a set of actions $a \in \mathcal{A}$
- a transition function: $\mathcal{P}(x, a, x') \equiv \Pr[x_{t+1} = x' | x_t = x, a_t = a]$
- a return function: $\mathcal{R}(x, a, x') \equiv \mathbb{E}[r_{t+1} = x' | x_t = x, a_t = a] \in \mathbb{R}$

• an objective such as: optimize
$$J(x) \equiv \sum_{k \ge 0} \gamma^k r_{t+k} | x_t = x, \gamma \in [0, 1)$$

• everything is stationary.

find: the optimal policy π^* that optimizes the objective function.

Theorem (Blackwell): in this setting, π^* is stationary and deterministic: $\pi^* : \mathcal{X} \to \mathcal{A}$: in each state, there is an optimal action(or possibly, several strictly equivalent optimal actions).

1.5 Representation of states

- in real settings, we do not know how to represent states in an "optimal" way, that is, such that the problem is Markovian, and such that the computational cost is lowered.
- even on toy examples, the Markovian representation may be enriched to get improved performance:

2. Non Parametric Function Approximation for ADP & RL

2.2 Experiments in RL

Results on the inverted pendulum task: (same kind of results for other tasks, such as the swimmer and the spring cart-pole).

$$\Theta_1$$

2.1 Basics

We use non parametric function approximators to obtain at the same time:

• a sparse approximation of V,

- a "good" representation of states.
- Here, we use cascade-correlation networks:

- very efficient,
- works quite well in practice.
- not theoretically grounded,
- very difficult to interpret,
- grows but never shrinks.

We obtain the same kind of results in the case of Approximate Dynamic Programming.

• various issues in control, and the level of approximations required to obtain good policies.

• efficient in terms of computation time,

References

[1] S. Girgin and Ph. Preux. Feature discovery in reinforcement learning using genetic programming. In *Proc.*11th Euro-GP, volume 4971 of LNCS, pages 218–229. Springer, 2008. [2] S.Girgin and Ph.Preux. Incremental basis function expansion in reinforcement learning using cascade-correlation networks. In Proc. ICML-A, pages 75-82. IEEE Press, 2008. [3] S. Girgin and Ph. Preux. Basis expansion in natural actor critic methods. In Recent Advances in Reinforcement Learning, volume 5323 of LNAI, pages 111–124. Springer, 2009. [4] Ph. Preux, S. Girgin, and M. Loth. Feature discovery in approximate dynamic programming. In Proc. IEEE ADPRL, 2009.

RIA