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Abstract: We investigate methods and algorithms to obtain sparse representations in the context of adaptive control. We are particularly interested in situations in which we look for a control in
an unknown, stochastic, possibly non stationary environments, using no prior knowledge. Here, we present our work based on the use of cascade-correlation networks which yields very sparse
representations, yet keeping the ability to obtain highly performing controls.

1. Approximate Dynamic Programming and Reinforcement Learning

1.1 The situation
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1.2 Formal framework
Given a Markov decision problem:

• a set of instants of decision, t ∈ T
• a set of states x ∈ X (discrete or continuous)
• a set of actions a ∈ A
• a transition function: P(x, a, x′) ≡ Pr[xt+1 = x′|xt = x, at = a]

• a return function: R(x, a, x′) ≡ E[rt+1 = x′|xt = x, at = a] ∈ R
• an objective such as: optimize J(x) ≡

∑
k≥0 γ

krt+k|xt = x, γ ∈ [0, 1)

• everything is stationary.

find: the optimal policy π∗ that optimizes the objective function.
Theorem (Blackwell): in this setting, π∗ is stationary and deterministic: π∗ : X → A: in each
state, there is an optimal action(or possibly, several strictly equivalent optimal actions).

1.3 ADP vs.RL

Approximate dynamic programming (ADP) when the PDM is known,
Reinforcement Learning (RL) when only X and A are known.

1.4 How?

Compute the value function of the optimal policy (ADP and RL): V (x) = max (EJ(x)).
This V is the solution of a non linear equation (Bellman optimality equation) that can be
computed in various ways.
π∗ is easy to deduce from this V .

Compute directly the optimal policy (RL only) by sampling trajectories.

V is obtained asymptotically by solving a series of regression problems: V0  V1  ...Vi  
...V .

1.5 Representation of states

• in real settings, we do not know how to represent states in an “optimal” way, that is, such that
the problem is Markovian, and such that the computational cost is lowered.
• even on toy examples, the Markovian representation may be enriched to get improved

performance:
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(x, ẋ, θ, θ̇) contains all the necessary information
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X = (x, ẋ, θ, θ̇) X = (x, ẋ, θ, θ̇, sin (θ), cos (θ)) X = (x, ẋ, θ, θ̇) and
automatically

discovered features

2. Non Parametric Function Approximation for ADP & RL

2.1 Basics
We use non parametric function approximators to obtain at the same time:
• a sparse approximation of V ,
• a “good” representation of states.

Here, we use cascade-correlation networks:
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(These 3 figures show how a CCN grows)

The +’s:

• very efficient,
•works quite well in practice.

The -’s:

• not theoretically grounded,
• very difficult to interpret,
• grows but never shrinks.

2.2 Experiments in RL
Results on the inverted pendulum task: (same kind of results for other tasks, such as the
swimmer and the spring cart-pole).
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CCN produces a very sparse
representation of the value function,
which yields excellent performance: with
only 10 hidden units, we do better than a
512 RBF-network for instance.

The function being learned.

We obtain the same kind of results in the case of Approximate Dynamic Programming.

3. Conclusion

• very sparse solutions in adaptive control applications,
• very sparse representations along with highly performing policies,
• efficient in terms of computation time,
• difficulty to interpret the representation; lack of theoretical background.

4. Future work

• scalability towards larger problems,
• various issues in control, and the level of approximations required to obtain good policies.
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