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Abstract: We consider the LASSO problem. Here, we propose ECON, a LARS-like algorithm that deals with parametrized features and finds their best parametrization.

1.1 LARS
The LASSO problem:

1. From LARS to ECON

e given N samples (z;,y;) € D x R, find y = Z’gjg( WPk, With ¢; : D — R, that minimizes:
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e K is not fixed: it should be adjusted;
e value constant of regularization \: ???
The LARS algorithm [1]:

Key point of the LARS: the weight wy | is set so that this newly made active feature is as
much correlated with the current residual as the other active features, and not as much as to
minimize the current residual. See (kernel) basis pursuit algorithm [2].

At a certain iteration, the change in A, A\ is computed exactly. The minimum is found by
exhaustive search.

Misc, but very important. some active feature may become inactive while riding the
regularization path because its weight goes down to 0 (in magnitude). Such a feature leaves
A and returns to P.

For X\ in between the \'s computed at two subsequent iterations, the weight of the active
features varies linearly.

1.2 ECON

e removes the problem of a priori setting the value of A by computing the whole path of ga.ase the minimization involved in the LARS is based on an exhaustive search, the LARS

regularization, that is {(\, w(A))} xer+

can not deal with an infinite number of features, not even with a very large one.

e the [, regularization yields very sparse solutions (though very accurate, y is still very sparse) The features have some hyper-parameters: the ¢'s are really ¢y where § € © C R’ is some
e the algorithm is very efficient w.r.t. the number of potential features, ® = {¢,.}.

e originally formulated with ¢; = jth attribute; kernelized since then (¢;(.) = x(z;,.), with x a

kernel function).
ldea of LARS:
o)\ «— +00
e set of active features: A « ()
e set of potential features: P «— d\ A
e compute the bias wy < + >, ¥; and set ¢y = 1 (identity function)
e number of active features: K = |A|
o formy = Z’éjg WPk
¢ while stopping criteria not fullfilled
— compute the residual r on the training set

— check wether the weight of an active feature has been nullifyed; if yes, remove it from A,

and put it back in P

— otherwise, select ¢y | = ¢* the feature among P which is most correlated with r

— compute its weight w1, add it to .A, remove it from P
— update the weights of all active features, set K + +, update .

hyper-parameters.

Usually, a finite, and small, set of hyper-parametrizations is chosen a priori, and the LARS is
run with them.

To the opposite, ECON deals with these infinite number of potential features, and selects the
best combination of features, along with their hyper-parametrizations.

The downside of ECON is that while LARS is solving exactly the minimization problem, ECON
IS not solving exactly the problem because of a lack of closed-form solution to this problem in
general. So, we have to use a global optimizer as a heuristic to solve the problem numerically.
We use DiRect to optimize this [3] which acts by dividing the domain recursively, is guaranteed
to converge to the global optimum asymptotically, and the longer is run, the better the found
solution.

The upside of ECON are however numerous:

e as the LARS itself, does not ask for a priori selection of the constant of regularization

e ECON unique ability to select the best, or a least a good, hyper-parametrization of the
features made active

e rather fast and efficient in practice
e once the kernel has been chosen, there is not parameter to hand-tune,

e produce very sparse solutions that seem to capture the complexity of the dataset quite well
(saturation of K even though more and more data are acquired)

2.1 A toy classification problem

2. Experiments

We use the 2 spirals problem, and compare a SVM to ECON. For this problem, we actually use 2 2 Eriedman’s functions

3 datasets: the original one made of 194 points; two others, with 500, and 1000 points, each
point belonging to either one of the 2 spirals. In each dataset, half of the examples belongs to
each class. We perform 300 iterations of ECON on the whole dataset.

FRIEDMAN’S FUNCTION SVM RVM [5] ECON
AVE.MSE | AVE.MSE | AVE.MSE |AVE.MSE MEDIAN MSE
F1 2.92/116.2 | 2.80/59.4 | 2.84/73.5 | 1.99/76 1.97/71
F2 4140/110.3 | 3505/6.9 | 3808/14.2 | 4845/54 4696 /55
F3 0.0202/106.5]0.0164/11.50.0192/16.4 | 0.0115/53 0.0113/53

dataset size 194 500 1000
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e SVM: the larger the dataset, the larger the number of support vectors, the same accuracy

Friedman’s functions: F1 has P = 10 atiributes, the domain being D = [0, 1]'V. The function
is noisy, and 5 of the attributes are useless. F2 and F3 are defined on some subset of R*
and are also noisy. For each of these problems, we generate training sets made of 240
examples, and the same test set of 1000 data. For these problems, we compare our results with
those obtained by [5], on a LASSO algorithm, and also reported for Support Vector Machine,
and Relevance Vector Machine. We measure the mean-squared error on the data-set. As
ECON computes the whole regularization path, we compare the results obtained, in the same
experimental settings, by ECON and the one proposed by [5] who obtains a solution with a
certain number of terms in g (K).

On F1, ECON by far obtains the best results among the 4 algorithms. Only 17 terms provide
an accuracy better than 2.8, the best accuracy mentioned for the other 3 algorithms. On F2, the
results are less good, but are still rather good. To stick to the results published in [5], the figures
In the table are averages; however, if we consider the best accuracy, or better, the histogram
of accuracies, it is skewed towards better accuracies.

2.3 Larger regression problems

We compare the performance of ECON with those published in [5] again. For Abalone, we
provide the accuracy measured on a test set of 1000 data / the number of terms (aka, the
number of support vectors) in y, averaged on 100 runs for ECON. For house-price-8L, the
training set is successively made of 1000, 2000, and 4000 data, the test set of 4000 data.

e ECON: number of bases remains almost constant, accuracy improves.

ECON uses only one functional kernel (2D Gaussian).
To conclude, ECON has captured the complexity of the dataset (which is fixed, whenever
enough data is available — 194 is enough here), and using more data improves the accuracy.

DATASET SVM RVM [5] ECON

ABALONE 4.37/972 | 4.35/12 | 4.35/19 |4.31/71, 4.30/100
HOUSE-PRICE-8L, 1K | 1.062/597 |1.099/33 | 1.075/61 0.57/20
HOUSE-PRICE-8L, 2K | 1.022/1307 | 1.048/36 | 1.054/63 0.41/38
HOUSE-PRICE-8L, 4K | 1.012/2592| NA |1.024/69 0.40/40

Furthermore, the solution given by ECON is sparser than the one given by SVM.

We have used 1ibsvm implementation in package e1071 in R, with automatic selection of the “best” model.

‘ 3. Conclusion |
‘ 4. Future work |

e ECON computes the regularization path of the LASSO problem, using functional features
e ECON provides very sparse expansions, yet yielding highly accurate estimators
e ECON is very easy to use: no parameter to hand-tune

e investigate further the global optimization
e hybrid it with a gradient descent
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