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Abstract

Metaheuristics have received considerable interest these recent years in the field of
combinatorial optimization. However, the choice of a particular algorithm to opti-
mize a certain problem is still mainly driven by some sort of devotion of its author
to a certain technique rather than by a rationalistic choice driven by reason. Hybrid
algorithms have shown their ability to provide local optima of high quality. Hy-
bridization of algorithms is still in its infancy: certain combinations of algorithms
have experimentally shown their performance, though the reasons of their success is
not always really clear. In order to add some rational to these issues, we study the
structure of search spaces and attempt to relate it to the performance of algorithms.
We wish to explain the behavior of search algorithms with this knowledge and pro-
vide guidelines in the design of hybrid algorithms. This paper briefly reviews the
current knowledge we have on search spaces of combinatorial optimization prob-
lems. Then, we discuss hybridization and present a general classification of the way
hybridization can be conducted in the light of our knowledge of the structure of
search spaces.

Key words: Evolutionary algorithms, Genetic algorithms, Hybrid algorithms,
Parallel meta-heuristics, Combinatorial Optimization.

1 Introduction

Metaheuristics have received considerable interest in the recent years in the
field of combinatorial optimization (see Osman and Laporte’s 1996 review
[28] which contains more than 1400 references). Even if some papers regularly
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pretend that a certain algorithm beats all the others on a problem, most re-
searchers are rather confident that only hybrid algorithms can actually lead
to really interesting performance in the field. Combinations of simulated an-
nealing [8], tabu search [17], and genetic algorithms [27] have provided very
powerful search algorithms (see C. Reeves’ book [35], or V. J. Rayward-Smith
& al ’s book [33] for a recent account of this field). However, hybriding algo-
rithms is sort of an art: which algorithms should be combined?, how should
they be combined?, how should each algorithm be written? are some of the
crucial issues. To date, there has not yet been any attempt to provide a global
view of the art of hybridization, nor guidelines to help in the choice of how to
hybridize and which algorithms should be combined to obtain the best result
on a certain instance of a problem. Such an ambitious goal is far beyond the
scope of this paper though we wish to make a step towards this direction. We
have begun to study the structure of some NP-hard problems as well as the
way local search algorithms are working. We have also made our best to work
towards a taxonomy of hybrids and the relation between the structure of a
problem and the performance of hybrids. The goal of this paper is to present
our current state of reflexion on these issues. Though this classification is cen-
tered around evolutionary algorithms, in its spirit, it is not restricted to hybrid
algorithms having an evolutionary algorithm in it. We exhibit an important
class of hybrids which have been rather poorly studied to date. We discuss it
in the light of recent works we have been doing which are very promiseful and
raise many questions both at the conceptual level and at the implementation
level.

The paper is organized as follows. First, we will review the work dealing with
the structure of combinatorial optimization problems. We will take some time
to review our own recent work that aims at filling the gap between the knowl-
edge we have on the structure of problems and search algorithms. Then, we will
present a taxonomy of hybrid algorithms that tries to encompass all published
work to date in the field and provide a unifying view of it.

2 Structure of NP-hard problems

It is a fact that the structure of search spaces of NP-hard problems is very
poorly known. However, we think that in order to really be able to have a
scientific approach of the design of search algorithms, such a knowledge is
required. This knowledge would help the designer of an algorithm to optimize
a certain instance of a certain problem to choose the most suited combination
of algorithms to accomplish this task. It is clear that the study of the structure
of search spaces is very difficult. Today, there are only a very few papers that
address this issue and their actual utilization to guide the design of algorithms
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has nearly never been done. We have been working for some time on this
problem of investigating the structure of NP-hard problems. In the same
time, we have studied the behavior of iterated local search algorithms in detail
and tried to relate to how they wander in a search space during their action.
We thus try to fill the gap between these two issues. The problem is complex
because there is a feedback between these two issues: the algorithm structures
the problem in a certain and important way, and this structure implies a
certain behavior of the algorithm.

The notion of fitness landscape is used to get some intuition about the struc-
ture of search spaces. This notion was imagined by Sewall Wright in the field
of dynamics of population in biology [44]. It is also known as “energy land-
scape” in statistical mechanics. This notion aims at providing some insight
into the problem structure and what an iterated local search algorithm “sees”
when exploring it. It is made of plateaus, valleys, peaks, canyons, ... Formally,
the definition is: let,

• E the set of all points of the search space,
• ω the operator that is used by the search algorithm,
• G = (E , E), the graph whose vertices are the points of the search space. An

edge links points x and x′ if x′ can be obtained by applying ω on x,
• L is the geometrical object obtained by assigning the quality as an altitude

to the vertices of G.

L is the landscape of the problem. When minimizing, the algorithm searches
for points of very low altitude in this landscape.

We have recently investigated the landscape associated to the Traveling Sales-
man Problem. Using the 2-change operator, we [15] have found that all local
optima are gathered in a structure called “massif central” by S. Kauffman
[21,22], or “big valley” by Kirkpatrick and Toulouse [23]. The massif central
contains only a very small amount of the whole search space: 1 point out of
O(n2n/3). This structure somehow dilutes when using the city-exchange oper-
ator which takes two cities in a tour and exchanges them [14]. This dilution
of the massif central is the reason why, as it is exprimentally known, city-
exchange provides local optima of lower quality than 2-change. The existence
of this massif central has led us to design an efficient hybrid algorithm that
first finds the massif central and then explores it in order to find better lo-
cal optima [30]. The existence of such a topology of the landscape has been
suggested for the flow-shop scheduling problem [45], and the graph k-coloring
problem [18]. If this might be a general property of combinatorial problems
having no constraint involved in it and using a suitable operator, the land-
scape of constrained problem such as the 0-1 Knapsack is not alike: in this
problem, local optima are located on the border of a “crater” lying between
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feasible and non feasible solutions [16].

In our mind, this knowledge of the structure of search spaces can be used, and
should be used, as a guideline in the choice of a search algorithm (it should
be clear to the reader that it is not a matter of choosing an algorithm for a
given structure of space: the use of an algorithm implies a certain structure by
itself: these two issues are strongly correlated). We now turn to a proposition
of taxonomy of hybrid algorithms and we relate them to the structure of the
search space in order to distinguish among them.

3 A Taxonomy of hybrid algorithms

Evolutionary Algorithms (EAs) more or less simulates a natural process 1 . As
such, they possess a certain dynamics which is inherent to the process, regard-
less of details related to solution representation or the way solutions are acted
upon by operators. One basic property of this process is that the population
it acts on is said to “converge”, that is to become more and more uniform 2

[31]. Starting with a random population, all its individuals become grossly
identical after a certain amount of time. The uniformization of genotypes is
correlated to a stabilization of the mean fitness of the population. If we sketch
the evolution during time of the mean fitness of the population, we see very
clearly that this stabilization is quite fast (see figure 1).

3.1 Sequential hybridization

A fundamental and practical remark is that after a certain amount of time,
the population is quite uniform and the fitness of the population is no longer
decreasing, the odds to produce fitter individuals being very low (250 gener-
ations on figure 1). That is, the process has fallen into a basin of attraction
from which it has a (very) low probability to escape.

This point leads us to raise two issues:

(1) once fallen in a basin, the algorithm is not able to know if it has found
the optimal point, or if it has fallen into a local optimum. Hence, we
need to find ways to escape the optimum in order to try to find an other
optimum,

1 as far as we understand this natural process, and we are able to simulate it.
2 we leave aside niching techniques that aim at avoiding this uniformization and
permit an EA to find, and maintain, multiple optima during the same evolution.
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Fig. 1. Evolution during time of the mean fitness of the population of a genetic
algorithm solving an instance of the Job-Shop Schduling Problem (JSP, on instance
MT10× 10). We have represented the mean fitness of the population (plain line) as
well as the fitness of the best solution found so far (dashed line). This evolution is
typical, regardless of the problem that is solved, the representation of individuals, or
the operators that are used. This evolution is a fundamental property of the process
at work in Evolutionary algorithms.

(2) the exploitation of the already found basin of attraction has to be realized
in order to find, as efficiently as possible, the optimal point in the basin.

The first point may be solved by restarting the EA with a new population
hoping that the EA will not fall into the same basin. Eshelman [11] reports
enhanced results using such a technique. This is quite natural since restarting
is equivalent to performing several runs. Hence the odds to find the optimum
are multiplied by the number of runs.

With regards to the second point, it is experimentally clear that the exploita-
tion of the basin of attraction that has been found may be more efficiently
performed by an other algorithm than by an EA. Hence, it is much more ef-
ficient to use a local search algorithm such as a hill-climbing or tabu search
(see figure 2). This schema of algorithm is qualified hybrid. More precisely,
we distinguish different kinds of hybridization: this one we qualify sequential
hybridization (SH). Basically, this phrase means that a set of algorithms is
applied one after an other, each using the output of the previous as its input,
acting in a pipeline fashion. The sequential hybridization may use a greedy
algorithm to generate a good initial population for the EA (see figure 2).
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Fig. 2. Sequential Hybridization. Three instances of this hybridization scheme are
represented. There may be more than three algorithms to be pipelined.

Many authors have used the idea of sequential hybridization. In [26], the au-
thors introduce simulated annealing to improve the population obtained by
an EA. In [25], the proposed algorithm starts from simulated annealing and
uses EAs to enrich the solutions that have been found. In [10], two genetic
algorithms are pipelined to solve a problem of routing of macro-cell layouts.

We have performed experiments on the graph partitioning problem using the
tabu search algorithm exploiting the result found by a EA [41]. This greatly
enhances the search performed either by the EA, or the tabu search alone
(see table 1 column 5 compared to columns 2, 3, and 4). The problem of
SH lies on deciding when to stop one algorithm and trigger the next one.
Waiting for the stabilization of the search is feasible. However, there may be
a time before actual stabilization when the process is already engaged in a
basin which it can not escape. Triggering the next algorithm from that earlier
moment might prove more efficient. Furthermore, as shown in figure 1, because
of the still acting mutation, there may be further improvements of the solution
after a relatively long stable phases (around generation 1750 on this example).
Triggering the next algorithm during the first stabilization may lead to miss
this further improvement of the evolutionary search. This leads to open issues
which we are currently concerned of.

Our recent work [30] has also exhibited an other strategy combining a multi-
start hill-climber and a degenerate genetic algorithm (performing only recom-
bination), the resulting population being optimized again, for a certain number
of cycles, by this sequential hybrid. The idea behind it is that the multi-start
hill-climber based on the 2-change operator reaches the border of the massif
central. Then, recombination is used to work inside the massif central gen-
erating new points which are not 2-optimal, and approaching a bit more the
center of the massif central. These solutions feed the multi-start hill-climber
which provides new, and better 2-optimal solutions, and so on.

We now turn to hybridizations based on parallelism.
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3.2 Parallel hybrid EAs

According to the size of problems we wish to study, it is rather tempting to
consider parallel implementations of EAs. Hence, there are several ways to
parallelize the basic EA. However, care should be taken to distinguish mere
parallel implementations of sequential EAs from implementations of parallel
EAs. The former aims at keeping the essence of the sequential search whereas
the latter forms a new sub-class of EAs behaving differently from the sequential
one. A detailed presentation of parallel GAs is well beyond the scope of the
present article (see [39,34] for a comprehensive treatment of this issue). Rather,
we will focus here on the parallel models as various kinds of hybridization of
the basic EA. We introduce a classification of these models, each class being
thought of as addressing different issues.

3.2.1 Parallel synchronous hybridization

The most immediate idea that comes to mind is to use some search method as
one operator of the EA. In this case, instead of using a blind operator acting
regardless of the fitness of the original individual and the operated one, we use
an operator which is a search algorithm that considers the individual as the
origin of its search, applies itself, and finally replaces the original individual
by the enhanced one 3 . The search algorithm may be a simple hill-climber, a
tabu search, or even some kind of simulated annealing algorithm [4]. We call
this kind of hybridization a parallel synchronous hybridization (PSH) because
the different algorithms are precisely synchronized.

PSH has led to many application of genetic algorithms to the effective op-
timization of NP-hard problems. On the TSP, [43] uses the 2-opt and the
Lk-opt heuristics to perform local optimization of tours. [12] discusses this
approach on the quadratic assignment problem, [13] on the graph coloring
problem. In [5], a PSH algorithm has been used for the multi-constraint knap-
sack problem and the set covering problem. A heuristic operator which utilizes
problem-specific knowledge is incorporated into the genetic operators. We only
mean to provide some examples here. The review is far from being thorough.
We have obtained good results on the graph partitioning problem hybridizing
a GA with a tabu search (see table 1 column 6).

However, this type of hybrids is subject to two important remarks. First, the
algorithm generally meets severe problems of premature convergence, short-
cutting to some extent the exploration phases. Second, more fundamentally,
the utility of the evolutionary algorithm is clearly questioned. As illustration of

3 This kind of operators is qualified lamarckian.
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GA HC TABU SH GA/TABU PSH GA/HC

Solution quality (min) 13.37 19.37 7.37 7.37

Solution quality (max) 22.37 44.37 18.37 13.37

Solution quality (mean) 18.67 30.47 12.67 11.97 13.45

Solution quality (deviation) 7.07 63.88 18.41 6.41

Search time (sec.) 438.7.9 995 1031.7 913.1 3407

Table 1
Graph partitioning with GAs, Hill-Climber (HC), TABU, and 2 kinds of hybrid EAs
(Benchmark: Split a binary tree of 127 vertices into 4 partitions). The figures are
averaged over 10 experiments. See [41] for details.

our purpose, on the JSP [9], a mere multi-start hill-climber based on the same
operator as the mutation generally outperforms the hybrid: the multi-start
hill-climber is faster, very easy to design, and provides solutions of higher
quality. This observation clearly questions the efficiency of the recombina-
tion operator. To be useful at all, recombination should be carefully designed,
rather than acting blindly on genotypes as was done in the early days of the
application of GAs on combinatorial optimization problems. However, some
parallel synchronous hybrids have given interesting results (e.g. see [43]).

Mutation

Tabu
EA

Fig. 3. Parallel Synchronous Hybridization. For instance, a tabu search is used as a
mutation operator in an EA.

We consider PSH as a first step towards hybridization. In several occasions,
PSH has provided better results than other methods on difficult problems.

3.2.2 Parallel asynchronous hybridization

We now turn to an other kind of hybridization on which we are extensively
working today, the parallel asynchronous hybridization (PAH). Basically, the
PAH scheme involves several algorithms performing a search of the research
space (or a sub-space of it), and cooperating to find an optimum. Intuitively,
PAH will ultimately perform at least as well as one algorithm alone, more
often perform better, each algorithm providing information to the others to
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help them.

We distinguish two different types of PAH:

homogeneous in which case all the cooperating algorithms are the same,
heterogeneous in which case different algorithms are used.

From an other point of view, we can also distinguish three kinds of cooperation:

global in which all the algorithms search the same research space. The goal
is here to explore the space more thoroughly. A heterogeneous global PAH
algorithm based on EA and tabu search has been proposed in [6] to solve
a network design problem. The population of the EA is asynchronously
updated by a parallel tabu search algorithm. The best solutions found by the
multiple tabu search algorithms build an elite population. Such a strategy
enables the different cooperating algorithms to explore the search space in
their own way, each having its own point of view on the problem (each
algorithm has its own landscape). The results of the different searches is
then confronted.

partial in which the problem to be solved is decomposed into sub-problems,
each one having its own search space. Then, each algorithm is dedicated
to the search of one of these spaces. Speaking in general terms, the sub-
problems are all linked with each other, thus involving constraints between
optima found by each algorithm. Hence, the algorithms communicate in
order to respect these constraints and build a global viable solution to the
problem. An immediate interest of this approach is to split a large problem
into sub-problems.

functional in which the algorithms solve different problems. An example of
such an approach has been developed in [1] to solve the quadratic assignment
problem (QAP). A parallel tabu search is used to solve the QAP, while a
genetic algorithm achieves a diversification task, which is formulated as an
optimization problem. A frequency memory stores information relative to
all solutions visited during the tabu search. The genetic algorithm refers
to the frequency memory to generate solutions being in unexplored regions
(see figure 4).

The so-called “island model” of parallel genetic algorithms [42] is a PAH and
can be any of these three types. However, it has been mostly implemented as
a global PAH.

Whether homogeneous or heterogeneous, global, partial or functional, the key
questions in the PAH lie in the design of the communication medium which
allows the different algorithms to exchange information. Issues that should be
addressed are:
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tabu tabu tabu

Parallel tabu search to solve the QAP

Genetic algorithm to solve a different optimization problem

(diversification task)

Communication
medium

solutions
Initial

memory
Frequency

Fig. 4. Parallel Asynchronous Heterogeneous Functional Hybridization. Several
search algorithms solve different problems.

EA Branch and Bound

Simulated 

annealing

Parallel tabu

search

Communication medium

Fig. 5. Parallel Asynchronous Heterogeneous Hybridization. Several search algo-
rithms cooperate, co-adapt, and co-evolve a solution.

• which individuals to exchange?
• when?
• how should they be handled by the other algorithms?

3.2.3 General hybridization schemes and applications

We have presented a classification of hybridizations. However, these hybridiza-
tions should be regarded as building blocks that can be combined in different
ways:

(1) P(S+A)H : a parallel asynchronous hybrid where EAs use search algo-
rithm as operators.

(2) S+PAH, or S+PSH : a parallel hybrid where the population is initialized
using the result of a search method.
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Fig. 6. A classification of hybrid EAs.

(3) S+P(S+A)H : a combination of both previous schemes.
(4) ... : actually, any thoughtful combination of previously presented schemes

An application of partial homogeneous PAH has been done for the JSP [19].
The search algorithm is a GA. Each GA evolves individuals of a species which
represent the process plan for one job. Hence, there are as many cooperating
GAs that there are jobs. The communication medium collects fitted individuals
from each GA, and evaluates the resulting schedule as a whole, rewarding the
best process plans.

D. Levine has used a P(S+A)H scheme in his PhD to solve set partitioning
problems (SPP) [24] which proves very efficient at solving big sized SPP in
real world applications (airline crew scheduling).

The classification that is proposed also encompasses algorithms that are not
related to EAs.

Let us consider Karp’s partitioning heuristic for the Traveling Salesman Prob-
lem [20]. Once the problem has been partitioned, each sub-problem is solved
independently of each others. Then, the tours that has been obtained are glued
together to form a valid hamiltonian tour, solution to the problem. This is thus
a S+PAH+S hybrid.

Ant colonies are also a homogeneous global PAH [7]. In this approach, a popu-
lation of insects (generally “ants”) are metaphorically asynchronously solving
a TSP. Ants are traveling on the edges of the graph corresponding to the in-
stance to solve. They communicate by leaving some substance on their path
(“pheromone”) that other ants detect and tend to follow at their turn.

11



3.2.4 Parallel hybrid implementations

Parallel hybridization schemes ideally provide novel ways to parallelize EAs
by providing parallel models of the algorithms. Parallel hybrids are inherently
suited to parallel computer environments. Furthermore, it should be pointed
out and emphasized that the PAH proposes natural ways to efficiently imple-
ment algorithms on heterogeneous computer environments which is recognized
as a very tough problem today.

As a first step, we have implemented a parallel asynchronous homogeneous
hybrid GA on various types of parallel architectures:

• Massively parallel SIMD machine: Maspar MP-1 of 16k processors,
• Parallel MIMD machine: reconfigurable network of 128 transputers,
• Homogeneous processor farm: 16 DEC Alpha,
• Heterogeneous network of 120 workstations: PC/Linux, Sun4/Sunos, Sun/Solaris,

...

The easiness to use parallel and distributed architectures has been acknowl-
edged for this hybrid model. We are experimenting with a functional hetero-
geneous PAH to solve the QAP [2]. A GA is cooperating with a parallel tabu
search algorithm. The GA has been implemented on a massively parallel 16K
processor Maspar MP-1 following a cellular synchronous model while the par-
allel tabu algorithm are running on a 16 Dec-alpha farm and a large network
of heterogeneous workstations (fig.7).

Maspar MP1 (16K processors)

Ethernet

16 DEC-Alpha Farm

Large network of heterogeneous workstations

tabu search
Parallel

Parallel Genetic
Algorithm

Alpha/OSF Sparc/Solaris Sun3/SunOs PC/Linux

Fig. 7. Parallel implementation of functional heterogeneous PAH algorithms.

Parallel hybrid algorithms fall into three categories depending on whether the
number and/or the location of work (tasks, data) depend or not on the load
state of the target machine:

• non-adaptive: this category represents parallel algorithms in which both
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the number of tasks of the application and the location of work (tasks or
data) are generated at compile time (static scheduling). The allocation of
processors to tasks (or data) remains unchanged during the execution of the
application regardless of the current state of the parallel machine. Most of
the proposed algorithms belong to this class.

An example of such an approach for parallel tabu search is presented in
[29]. The neighborhood is partioned into equal size partitions depending on
the number of workers, which is equal to the number of processors of the
parallel machine. In [2], a parallel GA is proposed, where the number of
tasks generated is equal to the population size which is fixed at compile
time.

When there are noticeable load or power differences between processors,
the search time of the non-adaptive approach presented is derived by the
maximum execution time over all processors (presumably on the most highly
loaded processor or the least powerful processor). A significant number of
tasks are often idle waiting for other tasks to complete their work.
• semi-adaptive: to improve the performance of parallel non-adaptive algo-

rithms, dynamic load balancing must be introduced [29][3]. This class repre-
sents algorithms for which the number of tasks is fixed at compile-time, but
the location of work (tasks, data) is determined and/or changed at run-time.
Load balancing requirements are met in [29] by a dynamic redistribution
of work between processors. During the search, each time a task finishes
its work, it proceeds to a work-demand. Dynamic load balancing through
partition of the neighborhood is done by migrating data.

However, the degree of parallelism in this class of algorithms is not related
to load variation in the target machine: when the number of tasks exceeds
the number of idle nodes, multiple tasks are assigned to the same node.
Moreover, when there are more idle nodes than tasks, some of them will not
be used.
• adaptive: Parallel adaptive programs are parallel computations with a dy-

namically changing set of tasks. Tasks may be created or killed as a function
of the load state of the parallel machine. A task is created automatically
when a node becomes idle. When a node becomes busy, the task is killed.
As far as we know, the only work along this line is [40].

4 Conclusion

Studying EAs to solve combinatorial optimization problems, we have presented
our current work in the field. We have argued for the use of hybrid algorithms.
Our early experimental results clearly show that this may prove as a fruitful
research path. Landscape analysis, and hybridization schemes constitute the
central issues of this work. Among other hybridization schemes, parallel asyn-
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chronous hybrid algorithms are strongly appealing for many reasons:

• following our natural insight, cooperation between individuals proves, on
the long run, an efficient strategy.
• asynchronicity adds an other level of stochasticity which has not been thor-

oughly explored to date. This implies non determinism. The lack of global
control is naturally replaced by the cooperation of methods.
• this model ideally meets the challenge of the implementation on parallel

computer environments.
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