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In real life, learning is greatly speeded-up by the in-
tervention of a teacher who gives examples, or shows,
how to perform a certain task. In all this abstract, we
let apart structural simpli�cations of the problem by
the designer which to not deal explicitely with learn-
ing. The intervention of the teacher can be realized
in di�erent ways: verbal explanation, demonstration,
guidance, shaping the behavior, ... see e.g. (Jordan,
1986; Gaussier et al., 1997; Hugues & Drogoul, 2001;
Rosenstein & Barto, 2002).

Conceptually, this means combining reinforcement
learning with supervised learning. In this work, we
focus on the guidance technique in which we virtu-
ally take the learner's hand and make it perform the
task, or a part of it. The examples are trajectories
in the state space. Having a set of examples, many
ways of performing such a combination may be con-
sidered. Here, we wish to provide some guidance to
a reinforcement learner and take advantage of a num-
ber of its properties: use the guidance as a help rather
than a strict order; improve the examples that have
been given as a guidance; adapt whenever the envi-
ronment changes; generalize as much as possible from
the set of examples. The latter feature is related to
the use of a relevant architecture to store current esti-
mates of the value of states. The other three features
are related to the trade-o� between exploration and
exploitation.

As reinforcement learners, we consider those known as
temporal di�erence methods (TD) (Sutton & Barto,
1998). At a certain time t ∈ N, the learner perceives
the state of its environment st ∈ S, chooses an action
to perform at ∈ A, and emits it. Then, the environ-
ment provides an immediate return rt ∈ R, as well as
the new state st+1. The TD algorithm aims at learning

a policy, that is, a mapping from S × A 7→ [0, 1] that
indicates the probability to emit a certain action in a
certaion state so as to maximize the expected return
Rt =

∑k=T
k=0 γt+krt+k, where T is the time at which

a certain goal state is reached (possibly T = +∞).
To do this, a TD learner estimates the value of each
state V (s) = E(Rt | st = s), where E(.) denotes the
mathematical expectation. The value allows the TD
learner to estimate the expected immediate return and
it is then able to compare it to the actual immediate
return. Then, the TD learner updates its estimate of
the value using the di�erence between the expected
return and the actual return (TD error).

After having described the general context, let us be
more speci�c about our point. As we said earlier, when
the learner chooses the action to perform in its current
state, it has to balance the exploration and the ex-
ploitation. As pointed out earlier, this balance has an
important and complex role (Thrun, 1992). The selec-
tion of action strategy in the context of a TD learner
receiving some guidance from an external teacher is
thus the topic of this abstract for which we propose a
novel critic-critic architecture.

One common issue in learning is over�tting. The TD-
learner uses a neural network as the value function ap-
proximator and is based on (Tesauro, 1992) adapted
to a continuous space as in (Coulom, 2002). The TD
learner should generalize from the example trajecto-
ries. In a realistic application, the de�nition of �states�
(i.e. the de�nition of S) is generally not obvious: if the
state is too rich, the learner may not be able to gen-
eralize to other states; too poor, it might not be able
to solve the task. Then, we propose to use two rep-
resentation levels: one using coarse grain, the other
one using �ner grain. Considering the �real� state is



a real-valued vector S, the �ne grain representation is
this vector, while the coarse grain representation is a
projection of this vector in a subspace s.

The coarse grain level learns a value function V (s)
while the �ner grain level learns a con�dence C(S) as-
sociated to V (s). The idea is to use this con�dence to
balance exploration and exploitation: if con�dence is
high, then exploit by choosing preferably the greedy
action; if con�dence is low, then explore by choosing
an other action. The coarse grain level produces gener-
alization while the �ner grain level corrects the former.
Bringing on the idea of the actor-critic architecture, we
propose to realize this idea with an architecture having
no actor, but two critics, one critic for each level. The
coarse grain critic (CC) provides an estimate of the
value of states (V(s)). Then, the �ne grain critic (CF)
assigns a certain level of con�dence the estimate can
be attributed (C(S)). Note that by default, the �ne
grain critic trusts the coarse grain critic. The whole
algorithm is sketched below.

Algorithm 1 The critic-critic algorithm:
1- Initialization of the learner
Use the example trajectories to estimate V(s) in CC
2- Unsupervised learning
t = 0, St= initial state, ∀S C(S)'0.5,
eligibility trace ET = ∅
3- Find a trajectory
while St non terminal do

S={S, S reachable from St at t + 1}
for S ∈ S do

s=projection of S in the subspace of CC
T(S)=C(S)×V(s)

end for
St=argmax

S∈S
(T(S))

if St /∈ ET then Add St to ET
Devaluate C(St) : C(St) = C(St) × α , α ∈ ]0,1[

end while
for all S ∈ ET do
Increase C(S) : C(S) = C(S)

α + 1
|ET |

end for

For example, we may consider the following problem.
Assume that a mobile agent has to reach a certain lo-
cation using as few energy as possible, given a certain
initial amount. The agent is characterized by its cur-
rent position and velocity in 3 dimensions and some
other properties. The value of a state characterizes
the cost to reach the target. The �ne grain state S is
made of all these data whereas the coarse grain state
s may be restricted to the x and y positions and the
velocity along z. This de�nition is based on a prior
analysis of the task which revealed that these 3 data

are the most important in the value of a state. Stated
otherly, these 3 data being �xed, the variability of the
value when the other data contributing to a �ne grain
state is small. So the value assigned to a state s made
of these 3 data has a certain level of con�dence accord-
ing to the various S which are projected onto s.

We are currently experimenting and assessing the
critic-critic architecture. A forthcoming improvement
of the critic-critic algorithm consists in merging the
two phases of supervised and non supervised learning,
so as to perform incremental learning. Being common
issues in supervised learning, we also aim at character-
izing the number of examples that are required to ob-
tain good generalization. We de�nitely think that the
combination of reinforcement learning with supervised
learning can be fruitfully adapted to a large spectrum
of problems.
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