Propagation of Q-values in Tabular TD(A)*

Philippe Preux

Laboratoire d’Informatique du Littoral
UPRES-JE 2335
Université du Littoral Coéte d’Opale
BP 719, 62228 Calais Cedex, France
philippe.preux@lil.univ-littoral.fr

Abstract In this paper, we propose a new idea for tabular TD()) al-
gorithm. In TD learning, rewards are propagated along the sequence of
state/action pairs that have been visited recently. In complement to this,
we propose to propagate rewards towards neighboring state/action pairs
along this sequence, though unvisited. This leads to a great decrease in
the number of iterations required for TD()) to be able to generalize since
it is no longer necessary that a state/action pair is visited for its Q-value
to be updated. The use of this propagation process makes tabular TD(\)
coming closer to neural net based TD(\) with regards to its ability to
generalize, while keeping unchanged other properties of tabular TD(X).

1 Introduction

Time derivative (TD) algorithms [9] are important reinforcement learning meth-
ods. Assuming discrete time, at each time step ¢ € N, being in a certain state
st € S, a reinforcement learning algorithm learns which action a; € A(s;) to
emit in order to optimize the total amount of rewards Ry = ZZ;O yiry it will
receive, where r; is the reward received at time step ¢, v is the discount factor
(v €[0,1]), and T can be oo. In the sequel, we assume that conditions to apply
dynamic programming techniques are not met.

A key point in the design of a TD()) algorithm lies in the choice of a structure
to store estimates of qualities (or values). One possibility is to use a look-up table
in which each state/action pair is associated to one element. The access as well
as the update of a quality costs a single array element access. An update only
concerns one state/action pair and to obtain an estimate of all state/action pairs,
all pairs should be visited once at the very least. However, the size of the table
is O(] S|) which may be considerable. The other possibility is to use some sort
of approximation architecture which represents the information in a much more
compact form. Different architectures have been used [2]. Among them, neural

* This paper is a slightly updated version of the paper that has been published in the
proceedings of the 13th European Conference on Machine Learning (ECML). This
update concerns a column of results in table 2, and the comment of this table in
section 3.3.

networks are rather popular and well-known for their ability to generalize from
their training. They have been used to tackle problems of large size, such as TD-
Gammon which learnt to play Backgammon at a grand master level [13]. In this
case, states are encoded in some way to be fed into the network. The output of
the network provides the current estimate of the state value. This estimate is a
function of the network weights. The number of weights to be learnt is very small
with regards to the number of possible states. In TD-Gammon, |S| is estimated
to be 10?°, while the number of neurons is varying around 300-400 depending on
the version of the program, resulting in 0(10*) weights to learn. These weights
are typically learnt using a backpropagation process. So, the access to a state
value costs the computation of the output of the network, while its update costs
a backprop; clearly, these computaitonal costs are much larger than in the case
of tabular TD()\). However, when weights are updated for a given input state,
the estimated value of all states are updated in the same time. There is thus
some sort of implicit parallel update of the estimation of all values. This confers
the neural based TD(\) much greater ability for generalization: it is no longer
required that a state is visited to have an estimate of its value.

Tabular TD()) is appealing when the number of states is small, whereas the
ability for generalization of neural networks is very attractive. So, in this paper,
we propose a variation of tabular TD to enhance its ability to generalize. This
variation can be embedded in Q-learning, Q()) [14], Sarsa, Sarsa()) [8, 7] and
their derivatives, and each of these algorithms can benefit of it. Basically, the idea
is to add a propagation process of Q-values (and we call the resulting algorithm,
the Propagation-TD, or PTD, as well as PQ(A) and PSarsa())). This idea relies
on the observation that two neighboring states s and s’ are such that, let a an
action that can lead from s to s', the quality of (s,a) (denoted Q(s,a)) is likely
to be closely related to the value of s’ (denoted V' (s')): if V'(s') is high, then the
quality of state/action pairs that lead to s’ is likely to be high too, and conversely,
unless the return when transiting from s to s’ via action a is very large. Actually,
neural network based TD(A) faces exactly the same problem. This propagation
process transforms tabular TD()\) into something coming close to neural TD
with regards to its generalization ability. Indeed, it is no longer required that a
state/action pair is visited for its quality to be estimated. Except with regards
to the compactness of the neural net representation of Q-values, we end-up with
an algorithm that combines the advantages of both approaches to TD learning.

In the sequel of the paper, we detail the propagation process in Sec. 2. Then,
we evaluate its interest using an experimental approach in Sec. 3. In this eval-
uation, we are mainly interested in PTD as an agent behavior control learning
algorithm, rather than as a value learning algorithm, although both issues are
closely related. We are also interested in combining supervised learning with
reinforcement learning in order to show the agent how to achieve its goal and
makes learning faster. After that, we discuss and conclude in Sec. 4.

2 The Propagation Algorithm

In this section, we detail the keypoint of PTD, that is the propagation process.
Before going into details, we wish to make it clear that this is a generic idea
from which different strategies can be drawn for general cases, and some specific
strategies can be drawn for specific cases, such as episodic tasks. So, we will not
detail all these specificities. Some of them will be discussed in the experimental

discussion, in Sec. 3. We use the notation s’ % s to mean that the action b
emitted in state s’ has a non null probability to lead to state s in a single
transition; s’ is a predecessor of s.

The propagation process acts as follows. Let us consider a TD(X) process,
and let us suppose that it has visited the state/action pairs (s¢,a¢)¢c[o,n] Since
it began. Then, the generic idea of PTD is as follows:

— build So = {s¢¢(0,1]}-

Then, Q(s',b) should be updated for any (s',b) such that s’ bse So, then
— build §; = Sy U {s', such that Q(s,b) has just been updated }.

Then, Q(s',b) should be updated for any (s’,b) such that s’ bse S1, and
consequently,

— build S; = &1 U {s',such that Q(s',b) has just been updated },

— iterate by building Sy using Sg—1 until some criterion is fulfilled.

Fig. 1 sketches the propagation algorithm embedded in a naive! Q()) us-
ing accumulating eligibility traces. The propagation process is handled in the
“Propagate” procedure. We could equally have given the propagation algorithm
embedded into Sarsa(\) by simply adding a call to “Propagate” at the end of it.

The propagate procedure relies on the assumption that we know whether a
transition between one state to an other state via a certain action is possible or
not; however, we do not need to know the probability of this transition.

Let us now discuss some details.

The propagation can be iterated as long as new state/action pairs are reached
by way of a saturation process. However, the discount factor involves a fast
decrease of the amount of update of qualities. So, after some iterations, this
amount can be neglected and the propagation can be stopped: this may avoid
a huge amount of updates, thus, and may save a huge amount of computation
time. Then, propagation can be stopped after a certain amount of iterations
either by limiting d, or by cutting off the propagation as the update becomes
smaller than a given threshold.

The update of Q-values is discounted by the factor v at each iteration of the
propagation (repeat/loop of the “Procedure Propagate” in Fig. 1). This tends to
create a gradient of qualities in the state/action space. Visually, in this space,
the standard Q(A) digs some sort of a very narrow furrow while PTD creates a

! the word “naive” is used according to [12]. In the case of Watkins Q()), a naive
update of eligibility traces involves that these are not reset after exploratory steps.

Procedure PQ(X)
Initialize Q(s,a) arbitrarily, for all s, a
Repeat (for each episode):
Initialize s, a
Initialize e(s,a) = 0 for all s,a
Repeat (for each step in the episode):
Take action a, observe r, s’
Choose a’ from s’ (e.g., e-greedy strategy)
ax < arg max,Q(s',b)
§ 1 +7Q(s', ax) — Q(s,a)
e(s,a) «+ e(s,a) +1
For all s,a
Q(s,a) < Q(s,a) + ade(s,a)
e(s,a) < ye(s,a)
Propagate
s+ sa+ad
Until s is terminal

Procedure Propagate
d+0
Sa « {(s,a),such that e(s,a) # 0}
Repeat
d<—d+1
Sa = Sa—1
For all s € S;_1
For all (s',b) € Sa—1
If s 5 s € S4_1 Then
update Q(s',b)
add (s',b) to Sy
Until stopping criterion is fulfilled

Figure 1. Generic outline of Propagation-Q(X). The basis is the tabular Q(X) as ex-
pressed in [12, p. 184], using a naive strategy, and accumulating eligibility traces. We
assume that the “For all” construction has a SIMD semantic, that is, all iterations of a
“For all” loop are executed at the same time.

whole gradient field. The update of Q-values is performed as follows using the
update equation of Q-learning:

Q(s',b) + Q(s',0) + aly? max Q(s,c) —Q(s',b)]
ceA(s)

There are two differences with Q-learning update rule. First, v appears with
exponent d which is the distance from s’ to the closest state in the eligibility
trace. Second, the current reward term is absent since the emission of b in state
s' has not been performed actually. This choice might be discussed. If this can
seem troublesome, it should be pointed out that this is precisely what happens
in neural TD(A). Indeed, in neural TD, the quality of a state/action pair being
stored in the weights of the network, changing the weights after a state/action
pair has been visited involves an alteration of the quality of many state/action
pairs. However, the consequences associated with the emission of the action are
not observed for these pairs. In some cases of application of PTD, a certain term
could be used to approximate a systematic consequence of an action, such as an
action cost. More generally, one might use a model of expected rewards.

In episodic tasks, a possible variation on this basic algorithm is to propagate
only at the end of the episode and not at each step. For episodic tasks where a
reward is always null except when the end of the episode is reached, propagating
the qualities only at that time does not alter the way the algorithm works and
saves a lot of computation time.

3 Experimental Assessment

In this section, we provide an experimental assessment of propagation Q(X) by
comparing its performance with regards to Q()\) on a test problem. The test
problem consists in finding an outlet or a goal state in a 2D labyrinth. This
problem can be made more complex by making it more or less random, stationary
or not, ... So, this is actually a whole family of problems rather than a single
problem that is used.

3.1 Experimental Setup

The labyrinth is defined in a gridworld where each cell can be either empty or
filled with a piece of wall. The state space is the set of cells of the labyrinth.
Each cell is numbered and the algorithm knows the cell in which it lies. Only
states corresponding to empty cells can be occupied by the agent. In each state,
the agent has the choice to stay in its current state, move upward, downward,
leftward, or rightward if it does not hit a piece of wall; only non wall-hitting
moves are allowed in any state. The agent receives a positive reward when it
reaches a goal state of the labyrinth, otherwise it does not receive any reward.
Clearly, this problem is markovian, and it is also fully deterministic. This is an
episodic task in which a reward is given only at the end of the episode. It is

not necessary to propagate at each iteration of the inner repeat/until loop of
procedure PQ()). It is only necessary to propagate it at the end of the episode.

We are mainly interested in algorithm to control an agent so that we are
mainly interested in algorithms that learn to behave correctly, rather than in
algorithms that learn to predict accurately state values or state/action pair qual-
ities. So, to evaluate our approach, we are interested in the number of iterations
required to learn to achieve the task, as well as the number of correct decisions
that the algorithm is making regarding actions that have been emitted to reach a
goal state, as well as the number of correct decisions the algorithm has learnt re-
garding actions that would have been emitted if the algorithm had followed other
trajectories. This latter somehow measures the generalization the algorithm has
made from its experience along trajectories it followed to reach goal states. With
the word “iteration”, we mean here one iteration of the inner repeat/until loop
in procedure PQ(A) of Fig. 1. We compare the performance of Q(\) and PQ()).
Both are run on the two leftmost mazes shown at Fig. 2. The first one (called the
“Pacman maze” later on) is composed of 206 states (wall cells are not counted),
while the second one is composed of 2310 states. This latter maze is drawn from
the partigame paper [4] and thus called the “Partigame maze”. Apart from the
difference in their size, the two mazes differ greatly in that in the pacman maze,
there are lots of walls and in most states, the number of possible actions is re-
duced to 2 (or 3 if immobility is possible). In the partigame maze, there are 4
(resp. 5) possible actions in the large majority of states. Finally, in the pacman
maze, goal states are the two outlets while in the partigame maze, the goal state
is the one used as such in the partigame paper.

For each run of the algorithm, we set it into an initial cell and let it find a
goal state. Then, we reset its position and run it again performing 100 reaches
of the goal (without resetting Q-values along these 100 runs). To obtain correct
statistics, we average the performance over 10 runs. In the pacman maze, initial
states are drawn at random at each new run while in the partigame maze, initial
and goal states are set to those used in the partigame paper [4]. To avoid certain
biases due to the pseudo-random generator and be able to discuss experimental
results more thoroughly, the algorithms can be run so that the initial states
are the same for the different algorithms. Propagation is stopped whenever the
amount being propagated becomes smaller than a certain threshold (10719). v
is set to 0.9, a to 0.5, and A to 0.9. Q-values are initialized to 0. The selection of
action is e-greedy, with € set to 0.1, that is 10% of exploratory moves (exploratory
moves are random moves).

3.2 Results

As expected, the average number of iterations is significantly smaller for PQ(\).
More preciselly, for both Q(A) and PQ()), the naive strategy provides much
better results than the non naive version. Consequently, we now use naive ver-
sions of the algorithms unless explciitely mentioned. At the least, Q()) needs
20% more iterations than PQ()) in the pacman maze, 4 times more for the par-
tigame maze: this is clearly an effect of the size of the state/action space. Both

Figure 2. Three mazes used in this paper. The leftmost maze has two goal states
(the outlets) as indicated by G’s leftmost and rightmost cells at mid-heigth). In the
rightmost maze, the algorithm has to find its way from an initial cell (S located in the
bottom line) to a goal state (G located in the upper right corner). The rightmost maze
is used at section 3.4. It has one initial state (S) and two goal states (stars), one goal
being better than the other.

algorithms perform approximately the same amount of backups (2 106 for the
pacman maze along 100 episodes); PQ()\) performs much more backups during
the first episode than during the next ones. However, it should be said that the
way we performed the comparison is unfair for PQ(A). Indeed, for this kind of
problems (deterministic), once Q-values have been propagated to all state/action
pairs, exploration is no longer necessary. The amount of exploratory moves be-
ing fixed by the value of € (0.1), PQ()\) always performs 10% exploratory moves
that are almost always useless: once the gradient field has been created, a mere
greedy selection of action is optimal. During a single execution of PQ(A), the
first episodes require much more iterations that the others. If we do not take
the 10 first episodes into account in the measure of performance, the relative
performances of the compared algorithms remain unchanged. This shows that
the difference of performance does not rely on a transient effect.

We have performed an analysis of the role of the parameter (o, 7, and A).
The results are contrasted since Q(A) is at its best with high values for o and
A (a = 1.0, = 0.75), while PQ()) performs at its best with small values
(a = XA = 0.1); both algorithms perform better with v = 0.5.

3.3 Capacity of Generalization

It is interesting to try to measure the capacity of generalization of the algorithms.
The capacity of generalization can be assessed as follows: having learnt a good
trajectory from an initial state to a final state, for what fraction of the state
space have correct actions also been learnt? Clearly, after one run of Q-Learning,
a one step trajectory has been learnt; for Q()), a several step trajectory has
been learnt, according to the length of the eligibility trace when the goal state
is reached. In PQ()), much more correct actions have been learnt. For the two
mazes that are used here, we obtain the results of table 2 after 1 and 100 episodes.
As expected, PQ(A) obtains the highest measures. Of course, the first episode

Table 1. This table summarizes some results obtained on the labyrinth problem for
the pacman maze and the partigame maze. Figures are averaged over 10 runs, each
made of 100 episodes. The second and third lines gives the size of the problems, either
as the number of states, or as the number of possible state/action pairs (this number is
given considering that immobility is forbidden; when immobility is a valid action, the
number of state/action pairs is the sum of the second and third lines). The “Length”
column gives the average number of iterations performed to reach the goal (this number
takes into account the distance between the initial state and the closest goal state),
the “Backups” column gives the average number of backups per run, while the “Greedy
actions” column gives the average percentage of states for which the learnt greedy
action is correct.

Pacman maze Partigame maze
states 206 2310
state/action pairs 488 8750
Algorithm Length|Backups|Greedy actions|Length|Backups|Greedy actions
Q) 46.7 |2.3 10° 48% 14.8 | 6 10° 5%
PQ(\) 38.3 | 2.7 10° 77% 3.5 | 3108 60%

of PQ(\) requires larger run times than for the other algorithms (approximately
10 times with our non optimized version). However, the next runs of PQ(A) are
very efficient and very fast: as far as a gradient is already available, the algorithm
has just to follow it greedily to reach the goal.

Table 2. Proportion of states for which the correct action has been learnt.

Algorithm after 1 episode after 1000 episodes
Pacman maze|Partigame maze/Pacman maze|Partigame maze
Q-Learning 0.4% 0.04% 75.0% 6.0%
Watkins’ Q(X) 0.4% 0.04% 74.9% 7.3%
naive Q(X) 1.8% 0.2% 62.1% 8.0%
PQ(XN) 11.1% 7.6% 92.9% 59.0%

It is also interesting to discuss the proportion of correct behaviors that are
learnt after a certain amount of episodes, or after having used a certain amount
of CPU time. After 100 episodes on the partigame maze, PQ(A) has learnt 76.5%
correct greedy actions (that is, in 76.5% of the state space, PQ(\) greedy selec-
tion selects the correct action to perform — indeed running 100 or 1000 episodes
does not increase significantly this figure). Using the same CPU duration (1
minute on a Pentium IIT, 500 MHz running Linux), PQ()\) performs 100 episodes,
while Q()\) performs 10* episodes on the partigame maze. In this case, Q()) has
only learnt 15% correct actions in the whole state space, that is, one quarter
of what PQ()\) does in the amount of time. Regarding the number of backups,

PQ(\) perfoms approximately 3 106 backups, while Q()\) performs 5 107 within
this amount of time. When plotted against the number of episodes, this propor-
tion of correctly learnt greedy actions levels; to get closer to 100%, one has to
perform more episodes so that certain yet unexplored regions of the state space
get explored.

From what has been reported, it is clear that, as expected, PQ(A) is able to
generalize much better than classical Q(A).

3.4 Dealing with Local Optima

For the moment, reaching either one of the two outlets of the pacman maze
provides the same positive return. We now consider a problem closely related in
which one outlet is sub-optimal: reaching one of the two outlets (say, the left-
most) provides a return equal to +5.0, while reaching the other outlet provides
a return of +10.0. We expect that PQ(X) (as well as regular Q(A)) will be able
to learn to reach both outlets, though favoring the outlet associated with the
largest return. Results are displayed in table 3 for two mazes, the pacman maze
where one outlet is made suboptimal, and a misleading maze drawn from [3]. In
the pacman maze, the two goals are equally easy to find, while in the misleading
maze, the sub-optimal goal is much easier to find than the real optimum. PQ(X)
and Q(A) reach the best outlet much more often than the sub-optimal one.

Table 3. This table displays the proportion of executions that reach either the sub-
optimal or the optimal goal in the pacman maze and in the misleading maze where
the two goals are distinguished with regards to the return they provide when reached.
Results are obtained over 10® runs of each algorithm.

PQ(X)|Q-learning
pacman maze 91% 84%
misleading maze|24.5% 3%

3.5 Combining Reinforcement Learning with Training

One can hope to greatly improve the performance of Q(\) by showing it a trajec-
tory (also called “training” technique), for instance, by way of a graphical inter-
face. However, this “obvious” improvement is not so successful or, for the least,
it is less successful that one would expect. Indeed, after having been shown a
trajectory and subsequently having been reset to its initial position, Q(\) begins
by following the demonstrated trajectory but, after some steps and depending
on the value of ¢, it escapes from this trajectory because it has performed an ex-
ploratory move. Once Q(A) has left the demonstrated trajectory, it is completely
lost and is generally unable to return to it. Then, Q(A) has to reach the target
by its own means, the demonstrated trajectory being then totally unused.

PTD solves this problem. When being shown the trajectory, PTD creates a
gradient towards the taught trajectory. Then, when behaving autonomously, this
trajectory is followed and exploratory moves simply lead out of the trajectory to
which it is attracted back by the gradient field when performing a greedy move.

Furthermore, exploratory moves naturally lead to the optimization of the
taught trajectory. Indeed, when shown via the graphical interface, the trajec-
tory is generally not perfect, that is, it is seldomly the best possible trajectory.
Starting from an already good approximation of the best trajectory, PTD opti-
mizes it little by little.

To illustrate this point, on the pacman maze, during the first episode, we
train the algorithm: instead of selecting itself the action to emit, the algorithm
follows a training trajectory. This trajectory is voluntarily sub-optimal, being
1.94 longer than the shortest trajectory from the initial state to the closest goal
(the training trajectory is the dashed line on the Pacman maze in Fig. 2). During
the next episodes, Q(A) trajectories are generally getting a little bit longer, while
those of PQ(A) are getting shorter. Averaged over 100 runs, after 1000 episodes,
the length of the trajectories followed by PQ(A) has shrunk down to an average
of 1.27 times longer than the shortest one, while the average length of those
followed by Q(A) is 1.83 times longer. The shortest trajectory followed by PQ()\)
is 1.11 times longer than the shortest, the 10% extra-length being explained by
€ = 0.1 leading to 10% exploratory moves; the longest trajectory is 1.74. In the
case of Q(A), the shortest trajectory is 1.42 and the longest is 4.0.

An other worthy point regards whether if the training trajectory leads to-
wards a sub-optimal goal, the algorithm is still able to reach the optimal goal.
To check this, in the pacman maze, we make the rightmost outlet sub-optimal,
while the leftmost outlet is the best rewarding goal and we train the algorithm
with the same trajectory as before, leading to the sub-optimal goal. Performing
10% episodes after having been trained during the first one, PQ(\) finds the best
optimum after 103 epsodes for the first time. On average, the best optimum is
found 66% along these 10° episodes.

More generally, we think that the use of PTD (instead of tabular TD), in
combination with training, can be applied in many cases and can bring important
speed-ups despite its initial overcost which is largely compensated by its ability
to generalize from its own experience and from training.

4 Discussion and Conclusion

In this paper, we have proposed the propagation TD algorithm. Based on tabular
TD methods, PTD tends to bridge the gap between tabular TD and neural TD
with regards to its generalization capabilities. While tabular TD updates only
Q-values of state/action pairs that are visited, PTD propagates the updates
to state/action pairs that lead to states that have been visited. Propagation is
grounded on the idea that if a state s has a high value, then state/action pairs
that lead to s are likely to have a high quality. This idea is general and can be
applied to all tabular TD algorithms. There are a number of nice features of

PTD. First, PTD does not involve any extra parameter. Second, as a natural
extension of tabular TD(A) algorithms, propagation can be used instead of these
algorithms in many places and applications. For example, it can take advantage
of techniques to speed-up Q(A), or be used in hierarchical Q(\) to solve POMDPs
[15], ... Third, though not studied here, existant convergence proofs should be
able to be adapted from other algorithms to PTD?. Fourth, PTD is worthy
when combining reinforcement learning with training (or supervised learning)
by avoiding tabular TD to be unable to come back to the taught trajectory
after an exploratory move. In some sense, the rather blind tabular TD method
becomes far sighted. Fifth, the experimental assessment has shown that, even
though it has been implemented very crudely and we have not spent any time
to optimize neither the propagation of Q-values, nor the number of backups, the
run time of PTD is very reasonable and the trade-off between the run time and
the number of learning iterations is not bad for PTD. These last three points
make us think that PTD is worthy for applications based on Q-Learning that
require generalization abilities. The fact that PTD only needs to know which
transitions are possible is also a nice point with regards to real time dynamic
programming [1] for which a complete model is necessary.

With regards to existing work, PTD shares some similarities with Dyna, Pri-
oritized sweeping, and queue-Dyna. All three algorithms build a model (7, R)
where T'(s, a, s') is the estimated probability that taking action a in state s leads
to state s, and R(s, a) is the estimated return of taking action a in state s. Dyna
was introduced by [10, 11]. In complement to regular Q-learning, Dyna main-
tains and updates the model (T, R) at each iteration and uses it to update its
estimates of the quality of k other state/action pairs drawn at random among
those that have been visited. Prioritized sweeping and queue-Dyna are two sim-
ilar techniques that have been proposed independently, respectively by [3] and
[5]. They are both derived from Dyna from which they differ in that state values
are estimated instead of state/action pair qualities, and updated estimates are
not drawn at random. Each state is characterized by its predecessors, as well as
a priority. Value estimates are updated according to the priority of states: the
value of the states having the highest priority is updated. For each updated value
V(s), the priority of s is reset to 0, while the priority of the predecessors s’ of
s is updated proportionaly to the change in V' (s) and T'(s,a, s'). Thus, PTD is
yet an other strategy. First, PTD does not make use of such a thorough model:
it solely relies on whether a transition between two states is possible or not. Sec-
ond, the updated state/action pairs are all those that have been visited since the
beginning of the episode as PTD uses eligibility traces, as well as neighboring
state/action pairs of updated state/action pairs.

In the near future, we wish to optimize the propagation process. More fun-
damentally, we wish to compare more precisely the ability to generalize of PTD
with regards to neural TD. We also wish to evaluate the generalization abilities
of PTD with regards to the size of the state/action space, and the performance

% as a matter of fact, the idea of PTD has been proposed very recently and indepen-
dently by other authors, accompagnied with such a convergence proof [16]

of PTD in a non deterministic environment. We are also currently evaluating the
usefulness of using PTD instead of Q-learning to control the animat MAABAC
[6]: this is a multi-segmented artefact in which multiple reinforcement agents
learn to collectively solve a task. In this application, the environment is no
longer markovian, nor stationary.

Acknowledgements

The author would like to thank anonymous reviewers for their constructive re-
marks, as well as pointing towards the recently published and very closely related
paper [16].

References

(1]
(2]
[3]
[4]

[5]
[6]

[7]
18]

[9]

[10]

[11]
[12]
[13]

[14]

A.G. Barto, S.J. Bradtke, and S.P. Singh. Learning to act using real-time dynamic
programming. Artificial Intelligence, 72:81-138, 1995.

D.P. Bertsekas and J.N. Tsitsiklis. Neuro-dynamic programming. Athena Scien-
tific, 1996.

A.W. Moore and C.G. Atkeson. Prioritized sweeping: reinforcement learning with
less data and less real time. Machine Learning, 13:103-130, 1993.

A.W. Moore and C.G. Atkeson. The parti-game algorithm for variable resolution
reinforcement learning in multidimensional state-spaces. Machine Learning, 21,
1995.

J. Peng and R.J. Williams. Efficient learning and planning within the dyna frame-
work. Adaptive Behavior, 1(4):437-454, 1993.

Ph. Preux, Ch. Cassagnabére, S. Delepoulle, and J-Cl. Darcheville. A non super-
vised multi-reinforcement agents architecture to model the development of behav-
ior of living organisms. In Proc. European Workshop on Reinforcement Learning,
October 2001.

G.A. Rummery. Problem Solving with Reinforcement Learning. PhD thesis, Cam-
bridge University, 1995.

G.A. Rummery and M. Niranjan. On-line Q-learning using connectionist sys-
tems. Technical Report TR 166, Cambridge University, Enginerring Department,
September 1994.

R.S. Sutton. Learning to predict by the method of temporal difference. Machine
Learning, 3:9-44, 1988.

R.S. Sutton. Integrated architectures for learning, planning, and reacting based on
approximating dynamic programming. In Proc. Seventh Int’l Conf. on Machine
Learning, pages 216-224. Morgan Kaufmann, 1990.

R.S. Sutton. Planning by incremental dynamic programming. In Proc. Eighth
Int’l Conf. on Machine Learning, pages 353-357. Morgan Kaufmann, 1991.

R.S. Sutton and A.G. Barto. Reinforcement learning: an introduction. MIT Press,
1998.

G. Tesauro. Temporal difference learning and TD-Gammon. Communications of
the ACM, 38:58-68, 1995.

C.J.C.H. Watkins. Learning from delayed rewards. PhD thesis, King’s college,
Cambridge, UK, 1989.

[15] M. Wiering and J. Schmidhuber. HQ-Learning. Adaptive Behavior, 6(2):219-246,
1997.

[16] W. Zhu and S. Levinson. PQ-learning: an efficient robot learning method for
intelligent behavior acquisition. In Proc. 7th Int’l Conf. on Intelligent Autonomous
Systems, March 2002.

