
Introducing interactive help for reinforcement learners
Fabien Montagne1 and Philippe Preux2 and Samuel Delepoulle3

Abstract. The reinforcement learning problem is a very difficult
problem when considering real-size applications. To solve it, we
think that many issues should be studied altogether. To achieve such
an endeavor, we also think that it is quite common that human be-
gins can provide help on-the-fly to the reinforcement learner, that
is when he/she sees how the learner is (mis)behaving, or could per-
form better than what it is currently performing. This work precisely
aims at designing a principled way to help a reinforcement learner in
such a context. We put the emphasis on the fact that the help being
provided cannot be expected to be perfect (whatever “perfect” might
mean here...).

1 Introduction
In this paper, we deal with sequential decision problems and particu-
larly with reinforcement learning to solve them.

We consider the problem of providing help to a reinforcement
learner (RLearner in the sequel). The underlying idea is that we
(as humans) can generally provide useful help/information to a
RLearner. This is implicitly done during the design phase: the spec-
ification of the sequential decision problem (as far as we are given
some choice in it) already helps the learning algorithm by restricting
the size of state space, or of action space, having more informative
states, designing the problem to be markovian, ... We will not deal
with these design issues here. Once the sequential decision problem
has been designed and the RLearner is actually learning, whenever
we are able to “see” what the learner is doing, we generally have the
feeling (and even the urge!) to help it. The question we address here
is how we can actually provide on-line help to a learner. More pre-
cisely, the learner has a certain representation of what it has already
learnt (e.g. its current estimate of the value function in the case of the
resolution of a Markov Decision Problem – MDP); then, how can we
transform this informally defined help into something that can use-
fully be combined with what the learner has already learnt? There
are several issues here:

• the combination between the two sources of information,
• the fact that this combination should be done on-line,
• more primarily, the very representation of the help,
• the fact that the help cannot be expected to be “perfect”: the human

helper does its best but still, assuming perfection of the help is
much too much.

We want here to stress the fact that we want to keep the RLearner
“untouched”, that is, un-modified to provide it with help. The
RLearner should be designed so as to be able to incorporate new

1 LIL, ULCO, Calais, France, email: montagne@lil.univ-littoral.fr
2 LIFL, UMR CNRS, Université de Lille 3, Villeneuve d’Ascq, France, email:

philippe.preux@univ-lille3.fr
3 LIL, ULCO, Calais, France, email: delepoulle@lil.univ-littoral.fr

information that helps it solve its assigned task. In this regard, what
we present here can be combined with other approaches that modify
the task to solve (see shaping [9, 5], hierarchical MDPs [4], dynamic
abstraction [2]...).

In the sequel of this paper, we will concentrate on Markov Deci-
sion Problems, and on reinforcement learning: thus, we consider that
a reinforcement learner has to solve a given MDP. Then, how can we
design such a RLearner so that it is able to take advantage of some in-
formation obtained on-the-fly, while solving a given MDP. We think
that some of the presented ideas may be drawn outside of this con-
text to more general sequential decision problems, and other learning
problems (not necessarily sequential decision problems, but also su-
pervised and unsupervised learning problems). The MDP has been
formalized by Puterman [8] as a 4-uplet M = (S ,A,R, T) where
S is the state space,A is the action space,R : (S ×A×S)→ R
is the reward function, and T : (S ×A×S)→ [0, 1] is the transi-
tion function, to reach the state s′ when performing a certain action
a in a certain state s.

This paper is organized as follows: in section 2, we discuss what
kind of help can be provided; in section 3, we discuss the design of
a reinforcement learner that takes advantage of this sort of help; in
section 4, we present some experimental results; section 5 concludes
and discusses this work.

2 What is help?

Various sorts of help can be provided. This help may be provided
using a certain “high-level” language [6]. Help can also be provided
as actions to perform in certain states [10]. In a multi-agent context,
interactions between two agents with the same goal could share par-
tial knowledge [7]. Like in some previous works, we want to give
help incrementally, our help must not modify the MDP, the trainer
gives information when it thinks it’s worthwhile, and the given help
is not necessary optimal (this implies that the learner must be able
to correct, modify the trainer advice). At this constraint we add two
new ones: the learner does not need to know the dynamics of state
(he does not need to be able to give explicitly a policy or partial pol-
icy, or to know the transition function), the trainer state space can be
different of the learner one.

Which help is interesting to a certain RLearner also depends on
how the RLearner actually solves the MDP, either by estimating
its value function, or by direct policy search to name the two most
used approaches. In this paper, we favor the estimation of the value
function. This being said, we might consider the problem as that
of a regression (supervised learning) problem: we seek at learning
a real-valued function and we provide some examples of this func-
tion. However, reinforcement learning is surely not a regression prob-
lem, even though, in the considered framework here, the RLearner
learns a real-valued function. So, there is a mismatch between what

we may provide the RLearner – couples (transition, average reward
on this transition) – and what the RLearner has to learn, that is
V (s), ∀s ∈ S , where S is the set of states of the MDP.

In this paper, we consider that the help is made of trajectories, each
being a set of transitions between states. However, to make things
easier for the helper, we do not assume that these trajectories go from
an initial state to a final state, nor that they may be represented ex-
actly as continuous trajectories in the RLearner states space. Indeed,
we do not expect that the helper represents its help in the same state
space as the state space of the RLearner. Furthermore, we do not as-
sume that the helper knows anything about the reward function of
the MDP, merely that he knows (or, that he feels) that a certain set of
transitions should be quite correct for the learner to reach its goal.

To give the flavor of what we will do so that the RLearner can use
this help, these trajectories will be represented in the RLearner state
space and a numerical gradient is created alongside, from its first
extremity towards its other extremity (the help trajectories are orien-
tated from their beginning to their end). This gradient will be used
by the RLearner as an indication stating that it is a good thing for it
to go along this path in the state space. Furthermore, this information
should be somehow generalized so that neighboring transitions can
be considered as close to those belonging to the help trajectories.

To be more precise, let us define Σ the state space in which the
help is provided to the RLearner. Typically, Σ is a subspace of the
MDP state space S . (We consider here continuous state spaces). We
suppose that then exists a function Φ: Σ→ S , and we note Φ(si) =
σi.

Then, a trajectory Tr is defined as a finite, ordered set of elements
of Σ: Tr = {σ1, σ2, ...σm}, σi ∈ Σ. A transition t ∈ Tr is then a
couple of subsequent elements: (σi, σi+1).

We then create a potential A along a trajectory. This potential as-
signs a real value to each transition of the trajectory: A(σi, σi+1).

The help provided by the helper is then a set of trajectories. With
the previous definitions, and in particular, the way we create a gradi-
ent on transitions (we do not assign a value to states), we do not have
any problem with intersecting trajectories, or with two (or more) tra-
jectories going into reverse directions.

The way we actually create the gradient (the very definition of
A) is not settled. Since we define A(σi, σi+1) > 0, this defines a
positive gradient, and indicate that from the state σi, it seems to be a
“good idea” to try to reach the state σi+1. The main benefit to define
a gradient for each transition beside define a gradient for each states,
is that our gradient is independent of the quality of our trajectory and
independent of other examples. To define a gradient we have many
possibilities, such as assigning random values to each transition of a
trajectory, or assigning a constant gradient to each transition,...

As long as the RLearner is not working in the same state space as
the one in which the help is represented, we must solve this issue,
as well as provide some generalization abilities to avoid perform-
ing mere rote-learning: neighboring transitions from those present
on the help trajectories should be rated, according to their closeness.
Regarding generalization, we are left here with all the methods of
supervised, regression problems: to each transition, according to the
rated transitions that appear in the help trajectories, we have to in-
duce a rate for other transitions, which do not appear in the help. We
should favor a regression algorithm that may be used incrementally.
This led us to locally weighted regression (LWR) algorithms, which
have proven their efficiency and good performance in regression and
in reinforcement learning [1].

To use LWR techniques, we basically have to choose a kernel func-

tion k(t1, t2) which measures the similarity between two transitions
t1 and t2. Transitions may be seen as segments in some space, that
we suppose here euclidian (if it is not euclidian, we need that it is a
metric space at least, which is a rather mild requirement). So, the ker-
nel function has to measure the similarity between two segments. In
the present work, we have used a measure that combines two things:
the angle between the segments, and their relative distance. So, k is
decomposed into k1k2. k1 is defined by:

k1(t1, t2) =

8<: exp−c sin2 (t1,t2) when the angle between t1 and t2
∈ [−π

2
, π

2
]

0 otherwise

where t1 and t2 are two transitions. k2 is defined by:

k2(t1, t2) = exp−d×max dist

where max dist is the maximal distance among (s1, s3), (s1, s4),
(s2, s3), (s2, s4), where (s1, s2) are the extremities of t1, and
(s3, s4) are the extremities of t2. c and d are constants.

Then, to estimate the potential A(t) of a certain transition t, we
use the following equation:

A(t) =
X
t′∈T

A(t′)k(t, t′) (1)

where T is the set of all the transitions in all the trajectories that
have been provided to the RLearner up to now.

3 A RLearner that takes advantage of this help

At this point, we have described how we represent the help provided
by a helper. Now, we describe how an RLearner can make use of it.
As above, we consider here that the learner learns the value function
of the MDP under consideration.

So, as seen in the previous section, the help is somehow trans-
formed into some real-valued function denoted A. It should be very
clear that A is not meant to be an approximation of the MDP value
function, that we will denote with the usual V . The thing is that the
RLearner, while interacting with its environment, has to learn V . V
will let it select its action at each iteration. We will note C the value
function which is estimated in this manner; we consider here that C
is learnt by a usual Temporal-Difference method, say the TD(λ) al-
gorithm. The problem is to combine C and A. Both functions are
learnt incrementally: C is learnt by interaction with the environment,
while A is learnt from the help trajectories, which may be provided
at any moment to the RLearner. According to the general idea of pro-
viding help, the helper provides help whenever he/she sees that the
RLearner is in trouble; so, the help trajectories should be taken into
account immediately; for example, they should take the RLearner out
of a bad position, or help it find a way out of a place where it is stuck.
Instead of trying to combine A and C in a single representation of
the estimate of V , we use two function approximators, one for A and
an other for C to represent each function. And it is only when the
estimate of the value of a state s is required that both are combined
to provide V̂ (s). This has several advantages: it makes the on-line
incorporation of new help trajectories simpler since A and C are not
defined on the same space; the learner can always access to former
helps; help does not fade away as learning by interaction goes on.

So, to sum-up, the estimate V̂ (s), s ∈ S is obtained according to
the following equation:

2

∀s ∈ S , V̂ (s) = (1− ζ(s))× Ĉ(s)+
ζ(s)

P
a

P
s′ A(t(σi, σ))× T a

s,s′
(2)

where:

• s ∈ S is the state for which the value is required,
• Ĉ(s) is the current estimate of the value of s,
• A(t(σi, σ)) is the information obtained from the help (as ex-

plained in sec. 2, and according to eq. 1)
• σ ∈ Σ, σ = Φ(s) and σi ∈ Σ, sigmai = Φ(s′)
• T a

s,s′ is the probability (in the MDP) to reach s′ when action a is
emitted in state s

• ζ(s) : S → [0, 1] is a parameter which balances the information
available in the help, and what has already been learnt. Typically,
it decreases along time; the estimation of the value of a state ini-
tially takes into account the help and, progressively, as learning
is being performed by the trainee, the information learnt by the
trainee gets more and more accurate, so that the help gets less and
less importance. ζ depends on the state to keep on with the in-
crementally of help: newly obtained help is assigned a value of ζ
close to 1.

The previous equation may be easily stated for the estimate of the
quality function as follows:

∀s ∈ S , ∀a ∈ A, Q̂(s, a) = (1− ζ)× Ĉ(s, a)+
ζ

P
s′ A(Tr(σi, σ))× T a

s,s′ .
(3)

So, the RLearner simply:

• learns C as any TD(λ) algorithm does, by interacting with its en-
vironment

• updates A whenever new help trajectories are provided, according
to eq. (1)

• selects its action according to state value estimates obtained by
way of eq. (2)

3.1 The Actor-Critic-Critic algorithm
The actor-critic-critic architecture has been designed to integrate the
information available from the usual interaction loop in reinforce-
ment learning TD methods, and from the help receives incremen-
tally from the trainer. The actor-critic-critic has been inspired by the
Actor-Critic architecture [11]. The actor uses the value estimation V̂
to determine its policy. There are two critics: one critic represents the
current estimate of the value function in a usual way in reinforcement
learning (hence, provides the C(S) estimate of eq. 2), while the sec-
ond critic contains an internal representation of the help by way of a
gradient and provides the term A(Tr(σi, σ)) in eq. 2.

The actor-critic-critic algorithm is sketched in fig. 1.
In the actor-critic-critic, the help does not modify the relation

between the trainee and its environment. Indeed, the trainee still
uses usual reinforcement learning algorithms and update equations
of state value estimations. The help interacts only during the action
selection. This allows us to suppose that our agent is in the usual
convergence conditions [3]. Indeed, as long as we assume that the
sequence 1 − ζ converges to zero faster than the learning rate, the
help can be seen formally as a noise decreasing along time.

The actor-critic-critic is able to integrate at any time a new trajec-
tory without stopping the trainee because we use two critics. Algo-
rithm 1 sketches the reinforcement learning critic, while algorithm 2
sketches the critic that manages the help.

Environment

σ

A(σ)
C()

s

s

s

Helper

V(s)
^

^

ACTOR CRITIC 2

Reward

Action

CRITIC 1

Equation 2

Figure 1. The actor-critic-critic architecture.

Algorithm 1 Q-learning adapted to the ACC: α, γ are the usual
learning rate and discount factor, Q(S, a) is the Q-value estimation
using equation 3, C(S, a) the internal Q-value estimate of the rein-
forcement learner.

for all episode e do
perceive current state st

while st not terminal do
for all action a do

estimate Q(st, a) with equation 3
end for
select action a
execute action a
perceive next state s’ and reward r
C(s, a)← C(s, a) + α(r + γ maxa′ C(s′, a′)− C(st, a))
st ← s′

end while
end for

Algorithm 2 Critic managing the help: it is merely an infinite loop
that awaits for two kinds of events: one kind of events is the recep-
tion of a new trajectory; the second kind of events is to answer to
a state value estimate request. To simplify the notation, we suppose
that there exists an application Φ : S → Σ.

for ever do
new event E
if E = New trajectory Tr inserted then

potential construction
for all s ∈ S such as Φ(s) = σ and σ ∈ Tr do

ζ(s)← 1.0
end for

end if
if E = Calculate Q(s,a) then

update ζ
return (1− ζ(s))C(s, a) + ζ(s)

P
s′ A(Φ(s), Φ(s′))T a

s,s′

end if
end for

3

A note on the convergence of this algorithm: it is sufficient that
ζ(s) decreases faster than the learning rate α(s) to keep convergence
properties, in the case where the TD(λ) itself converges (see e.g. [3]).

4 Experiments
The ideas presented above are very difficult to study theoretically. In-
deed, there is a major issue which is related to the pragmatism of the
approach: help is provided when one sees it necessary. Furthermore,
as with most learning algorithms, the actual performance relies on a
set of parameters, some of them being functional:

• the space in which help is provided and represented in A, thus the
mapping from Σ to S ,

• the way the gradient is created along help trajectories, thus the
way A is created from the help trajectories,

• the kernel k used to compute the potential A of any transition,
• the way A and C are combined to provide its estimate V̂ (s), and

in the case used here, the way ζ(s) varies.

Although conscious that a more fundamental demonstration would
be desirable, we are only able to provide experimental evidences for
the moment. So, we use the mountain-car problem as described in
[11] as a testbed. This problem may seem overly simple, but its sim-
plicity lets us study the effect of the help more easily than on a more
complex problem. Furthermore, to provide help, it is nice to have
some way to visualize the behavior of the agent; in the case of the
mountain-car, this is fairly straightforward.

The problem is defined as follows: a car has to be driven up on
a steep road in mountains, starting from the bottom of the hill. The
state is specified by the position (x ∈ [−1.2; 0.5]) and the velocity
(ẋ ∈ [−0.07; 0.07]) of the car; the initial state is (−0.57, 0). There
are three actions available: full throttle forward (a = +1), full throt-
tle backward (a = −1), and no action (a = 0). However, from its
starting position, even at full throttle, the car cannot reach its goal; it
has to first move away from its goal, going up the opposite hill and
then, full throttle and thanks to gravity and inertia, reach the goal on
the other hill. There is a −1 return at each step, and a +1.0 return is
giving since the car is reaching the abscissa +1.2 (the abscissa of the
top of the mountain).

The dynamic of the environment is represented as follows :

x(t + 1) = x(t) + ẋ(t)
ẋ(t + 1) = ẋ(t) + 0.001 ∗ a− 0.0025 ∗ cos(3.0 ∗ x(t))

The speed is bounded by 0.07 and −0.07, if x(t + 1) < −1.2 the
x(t + 1) is fixed at −1.2 and x(t + 1) is set to 0.

We use the same representation as [11] for the value function (Ĉ
with our notation), that is, ten regular 9 × 9 tilings, each offset by a
random fraction of a tile width. The algorithm is a SARSA(λ) which
acts as an actor-critic. λ is set to 0.9, the discount factor γ is set to
0.9, the learning rate is set constant to α = 0.05, and the action
selection is greedy. We use replacing eligibility traces, so that, basi-
cally, we use the algorithm given in fig. 8.8 in [11]. An episode lasts
until the goal is reached.

As the number of actions is finite, the initial state is always the
same, and the problem is deterministic, we made an exhaustive
search and found that the best policy reaches the goal in a minimum
of 98 steps.

In the implementation of eq. 1, we set the kernel constants to d =
c = −5. To create the potential on transitions, the gradient is linear
with 100 divided by the length of the trajectory.

The RLearner’s state space S = [−1.2; 0.5]× [−0.07; 0.07]. The
helper provides its help by specifying coordinates in the plane (x, y)
as illustrated in fig. 2. So, Σ = [−1.2; 0.5] × [−1; 1]. In our exper-
iment, the helper has no means to specify a velocity, and naturally
could not give any policy in sense of action to . Of course, this is a
choice to conduct our experiment; this is not a limitation of our ap-
proach. Clearly, the velocity is very important in this problem; so the
lack of this information in the provided help makes it interesting, but
far from fully informative for the RLearner.

Figure 2. The mountain car task. The initial state is at the bottom
(x = −0.57); the goal state is at x = 0.5. The state of the RLearner is

(x, ẋ). The helper only perceives (x, y).

The help is based on four trajectories which are sketched in fig. 3.
Each of these trajectories means “go straight in a direction, do not
oscillate”. These trajectories are not positioned perfectly on the road;
furthermore, they are straight while the road is curved.

These two points make the provided help far from perfect, and
rather crude.

We have then performed several experiments providing different
helps made of those 4 trajectories. In all cases, there is a clear advan-
tage when help is provided, even in cases which might seem counter-
intuitive, such as merely using the trajectories 3 and 4 that together
specify to go straight up and down along the hillside opposite to the
goal. We have also experimented regarding the lengths of the seg-
ments that make the trajectories. With regards to the segments indi-
cated in fig. 3 which extremities are on end-point positions and at the
bottom of the hills, we noticed that shortening them to 60 % of their
length still yielded very good performance.

As said before, there are various parameters to set. For instance,
we have taken some time to try to figure out a correct ζ functional
parameter. We have used a function that decreases along an episode,
likewise the learning rate α. However, the intuition of providing help
is that help should be used immediately, during the current episode,
by the RLearner; then, in the next episodes, it should be used less and
less, since the information should become more and more captured
in the C function. So, it also seems natural that ζ remains constant
during an episode, and decrease along episodes. We actually com-
pared both approaches and obtained much better learning curves with
the latter approach (see Fig. 4). With this approach, and by a suit-
able choice in the variation of ζ, the performance of the RLearner is
greatly improved. Furthermore, there is a subtle balance to keep with
regards to the use of help: when the help is provided, it is immedi-
ately taken into account and if the help is really useful , there is a clear

4

Figure 3. The transitions with which the different trajectories are built.
The extremities of the transitions do not lie on points that can be reached by

the car (they are not located on the road, but beneath or above the road).

immediate improvement in performance; however, at each episode,
the help is less and less used, while the estimated value function (C)
is conversely more and more used; the shift between these two infor-
mation has to be tuned finely to avoid degradation of performance.

Figure 4. The learning curve for various ζ settings. “ne” denotes the
number of the current episode. The help is provided at the 10th episode. We

see on this plot that the 1
log 1+ne

is the best one: during the first episodes
after the help has been provided, the performance remains the same; along
episodes, there is a shift in the importance given to the help, with regards to
C; this implies a degradation of performance which is rather mild with this

function. After some more episodes, the performance is good again: the help
has been captured in the C function.

5 Conclusion and discussion
In this paper, we have presented our on-going work aiming at de-
signing a principled way to help a reinforcement learner while it is
solving a certain Markov decision problem. The idea is that this help
cannot be expected to be thorough, nor perfect, and that the help is
provided as trajectories in a certain space, which is not necessary the
states space in which the RLearner is acting. To this end, we have
defined an extension of temporal-difference algorithms that is able
to store this help, and take advantage of it, while interacting with

its environment. The algorithm sketched here is fairly general. We
have tested experimentally its efficiency. The performance are those
expected.

There are many directions to go on with this work. Obviously, ex-
periments on other problems should be done. The way the value of
a state is estimated also deserves more work. The representation of
the help (the function A) is based on a function approximator to per-
form a regression. If the locally weighted regression seems a good
algorithm for this purpose, the kernel function that is used may be
discussed; at least, the kernel function has to be adapted to the prob-
lem and the help that is provided. However, the way we create the
gradient should be further investigated. The ζ function that drives
the combination between the help A and the value estimate C should
also be investigated. We are currently thinking on a definition of it
for each state, that is a ζ(s, ne). This would allow variations of ζ
based on the number of visits to the states: if help has been given in
a certain area of the state space and the learner has not visited this
area, this help should be used when the learner will visit this area.

In the same spirit as what we did here, an other kind of help would
be to provide “don’t go in this area” information, that is, areas that
would better be fled from.

Even if experimental evidences that our method “works” are not
enough, it is already rather difficult to design a fully convincing way
to do it. The criterion according to which we may judge the advan-
tage gained by the algorithm is not clear. We try to study the “qual-
ity” of help, that is, how much a certain set of trajectories helps the
RLearner; it is very difficult to define a quantitative measure that ac-
curately handles this.

Finally, as we said in the introduction, providing help to a learner
clearly goes well beyond from the reinforcement field,know as active
learning. Partially interactive learning is a way to help solving large
learning applications where human beings may provide help on-the-
run, whenever he/she sees the algorithm in trouble.

REFERENCES
[1] Chris Atkeson, Andrew Moore, and Stefan Schaal, ‘Locally weighted

learning for control’, AI Review, 11, 75–113, (April 1997).
[2] A. Barto and S. Mahadevan. Recent advances in hierarchical reinforce-

ment learning, 2003. Discrete event systems (2003, to appear).
[3] D.P. Bertsekas and J.N. Tsitsiklis, Neuro-Dynamic Programming,

Athena Scientific, 1996.
[4] M. Dorigo and M. Colombetti, ‘Robot shaping: developing autonomous

agents through learning’, Artificial Intelligence, 71, 321–370, (1994).
[5] A. Laud and G. DeJong, ‘The influence of reward on the speed of re-

inforcement learning: an analysis of shaping’, in Proc. 20th Int’l Conf.
on Machine Learning, (2003).

[6] Richard Maclin and Jude W. Shavlik, ‘Creating advice-taking rein-
forcement learners’, Machine Learning, 22(1-3), 251–281, (1996).

[7] B. Price and C. Boutilier, ‘Accelerating reinforcement learning through
implicit imitation’, Journal of Artificial Intelligence Research, 19, 569–
629, (2003).

[8] Martin L. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming, John Wiley & Sons, Inc., 1994.

[9] J. Randløv, ‘Shaping in reinforcement learning by changing the physics
of the problem’, in Proc. of the Int’l Conf. on Machine Learning, pp.
767–774, (2000).

[10] M.T. Rosenstein and A.G. Barto, Learning and Approximate Dynamic
Programming: Scaling Up to the Real World, chapter Supervised actor-
critic reinforcement learning, 359–380, John Wiley and Sons, Inc,
2004.

[11] R. Sutton and A. Barto, Reinforcement learning, MIT Press, 1998.

5

