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Abstract

This paper focuses on using the fitness landscape paradigm in order
to gain a better understanding of the behavior local search heuristics in
order to sove NP-hard problems. We concentrate ourselves on the TSP
and we compare experimental facts about landscapes associated with the
well-known 2opt-move and city-swap operators. We measure the “fitness-
distance correlation” (FDC), i.e. the correlation between the fitness of
sampled points and their distance to a global optimum. We show that
the 2opt-move landscapes have greater FDC values than the city-swap.
We relate this with the fact that 2opt hill-climbers walks terminate on
solutions quite close to the global optimum, whereas city-swap walks are
unable to reduce the distance to the optimum (distances are measured in
terms of operator metric). This confirms former propositions about the
importance of a good FDC, and examplify the existence of non artificial
problems exhibiting this property. The difference in FDC also seems
more convincing than the usual auto-correlation measures when it comes
to explain the difference in performance between these two operators.
Furthermore, a good FDC value points to the possible use of intensifying
search techniques.

1 Introduction

There has been a recent interest in computational search techniques like Hill-
Climbers (HC), Genetic Algorithms (GA) or Tabu Search (TS) for combinatorial
optimization problems. GAs are known to work efficiently in the case of numer-
ical optimization, but results are less favorable when applied to combinatorial
issues. They all implement local search: the size of the set of solutions being too
big for exhaustive exploration, the search is restricted to manageable subsets
of the combinatorial space. This restriction is generally obtained via a neigh-
borhood notion: starting out from a solution (or subset of solutions) generated
randomly or via some algorithm, each solution has a reasonably small set of
neighbors, among which the exploration will be pursued. Usually the neighbor-
hood can be defined in terms of applying one or many operators to the point
(or set of points) of the search space, for example flipping one bit of its binary
representation. These methods are also called adaptive, because the exploration
usually goes through one of the bests of all neighbors, in a way that reflects Dar-
winian adaptation. So HC, GA and TS are indeed meta-heuristics, in the sense
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that they yield different results when choosing different neighborhood operators
or a different selection process for obtaining the most promiseful neighbor.

For all these techniques, there is a real need for a better understanding of
their intrinsic behavior. An interesting approach to gain some intuition on these
matters is the fitness landscape paradigm. To biologists, this notion is not a
new one, having been defined by Sewall Wright [1] who used it as a model for
Darwinian evolution. Intuitively speaking, a fitness landscape is obtained by
associating a fitness value with each point of a combinatorial space where a
neighborhood notion is defined. Then a walk can be made along neighboring
points, considering the fitness values encountered as altitude values. Along this
walk, one will wander through plateaus and plains, will climb hills or peaks,
and so on. Areas of high fitness may be viewed as mountainous regions whereas
those with low fitness may be considered as valleys. This provides a track for
an intuitive and qualitative reasoning, even if one must be aware of not relying
too much on this view.

Our main issue is using the fitness landscape paradigm in order to under-
stand the behavior of the search methods mentioned above. We currently focus
on the well-known Traveling Salesman Problem (TSP), in its planar euclidean
symmetric version. In this paper, we concentrate on HC algorithms, using two
neighborhood operators: the so-called 2-opt move and the city swap. These
operators are frequently encountered as mutation operators in GA, hence we
expect that results obtained through the study of HC models will also be us-
able for GA, which are difficult to study from the fitness landscape point of
view. We investigate some statistical features of reference instances of the TSP.
These measures follow the current trend for statistical analysis of fitness land-
scapes [2, 3, 4]. We give confirmation to Jones and Forrest’s proposition [4]
that fitness-distance correlation (FDC) is a crucial point when caracterizing a
problem difficulty, and we give a positive answer to their interrogation about the
existence of real, non-artificial problems with large positive FDC. We exhibit
HC walks that illustrate the impact of this correlation and open new ways for
intensifying search methods.

2 Definition of the TSP Landscape

To solve a TSP instance, one has to find a shortest tour linking every cities of
the instance, and coming back to the first one at the end. The two operators
we study are well known in the literature ([2, 5, 3]):

1. The 2opt-move reverses a sequence of consecutive cities in the tour (or,

equivalently, it “exchanges” 2 edges) as shown in figure 1. Each tour has
n(n—3)

5— neighbors.

2. The city-swap swaps any two cities in the tour as shown in figure 1. Each
nin—1)

tour has 3

neighbors.

A very natural and often used fitness function consists in using the length
of tours. We will use this standard, though it implies that the reader has to
remember we are not climbing uphill as said in the general introduction, but
on the opposite we are going downhill : better fitness means lower fitness value
and so shorter tour.
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The tour on the left is obtained by a 2opt-move applied on edges
(2,3) and (5,6) : these edges are removed and there is only one way
to rebuild a hamiltonian tour with two new edges. The tour on the
rigth is obtained by a city-swap applied on cities 1 and 4 : the tour
(1,2,3,4,5,6) becomes (4,2,3,1,5,6).

Figure 1: Effect of 2opt-move and city-swap operators.

In the next sections we will work with reference instances taken from the
tsplib [6], where we know a global optimum. In order to examine the behavior
of HC walks with respect to the global optimum, we will use different notions
of distance, based on the neighborhood operators. Let ¢; and 5 be two tours:

1. Let d.(¢1,t2) denote the smallest number of the city swap operator steps
needed to obtain ¢; from ¢5.

2. Let 02(t1,t2) denote the smallest number of the 2-opt operator steps
needed to obtain ¢; from ¢5.

3. Let 0 (t1,%2) denote the number of edges from 3 not present in ;.

We don’t know how to quickly compute d5, but we notice that a good linear
approximation is given by J., which, by the way, has a sensible semantic: the
more edges in common between two tours, the smaller the distance. When
studying a given instance with known global optimum g, we will note: A.(t) =
de(g,t) and Ac(t) = d.(g,1), the distance of tour ¢ to the optimum.

3 Correlation

A particular notion of correlation in a fitness landscape has been recently inves-
tigated in order to estimate the difficulty of a given problem or the adequation
of neighborhood operators [2, 5, 7, 3, 8, 9]. Basically, this correlation indicates
to which extent a relationship exists between a point and its neighbors. Otherly
stated, during a walk in the fitness landscape, is it possible to have a proba-
bilistic prediction for the fitness of the next point, from the fitnesses of those



encountered previously? Statistical measures have been proposed, usually based
on the notion of Box-Jenkins analysis of time series [10]:

e The autocorrelation function is a measure of the correlation between the
fitness of two points separated by ¢ random steps. This results in a number
between —1 and 1. The closer to 1 the absolute value, the larger the
correlation between the points.

e The correlation length of the landscape indicates the largest distance in
number of steps for which there is still a correlation between the start
point and the end point.

Experiments have been done on the TSP, notably in [3, 9]. The neighbor-
hood was given by applying the 2-opt move or the city swap operators. The
results showed that the landscape is more correlated for 2-opt move than for
city swap. Furthermore it is well-known that HC and GA yield better results
with the 2-opt move.

One could think that the above remarks settle the problem. However one
should notice that there is no clear explanation, in these works, for why a good
correlation implies good results for a search method. Indeed, this correlation is
measured for markovian walks, where each step is made independently of the
fitness values encountered, picking up a neighbor at random as the next point
of the walk. This is different from the fitness values encountered in a HC walk
that uses a steepest descent rule, choosing its best neighbor for its next step.
It is unclear wether the assumption of isotropy of landscape still holds when
comparing such different walks.

Another point worth mentioning is that the correlation length is given in [3,
11] as a function of the size of the instance regardless of any other parameter.
On the one hand, we acknowledge that being able to characterize the overall
performance of a particular operator for any instance of a given size, is really
interesting. On the other hand, there certainly exists instances of the same size
for which a given technique (for example 2-opt HC) feels more or less “at ease”,
i.e. local optima values are relatively farther from the global optimum value in
one instance than in an other. Being able to differentiate between such instances
is also important, and this cannot be achieved with a correlation length given
as a function of the instance size.

Returning to the TSP, we think that if one is interested in finding a global
optimum, using fitness values to guide oneself along a HC walk, then one has to
assume that there exists some correlation between the fitness values of encoun-
tered solutions and their distance to the researched optimum. This follows Jones
and Forrest’s proposition [4] about the importance of fitness-distance correla-
tion (FDC), which we also think of as being a determining correlation measure.
Obviously, there cannot be a good FDC if the correlation between neighbors
is not good. Nonetheless FDC seems to us more like a necessary condition for
the local search to be effective than a simple correlation between neighbors. In
the following, we study reference instances with known global optima, so we
can compute their FDC. We exhibit differences in fitness-distance correlation
between city-swap and 2-opt operators, that seems to us related to the behavior
of HC walks in these landscapes.
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Figure 2: Correlation between A, and ¢ for att48 instance.

4 Correlation measures in the T'SP Landscape

From several TSP instances where an optimal solution is known (such as att48,
kroA100, tsp225, pab61, pr1002 — the number at the end of the name is the
size of the instance), we study the relationship between A, and fitness. At least
10000 tours are sampled for each instance, with distance from global optimum
ranging from 0 to n — 1. These tours are generated by starting from the global
optimum and applying a random mix of 2-opt and city swap, in order to obtain
samples that are not biased towards one of these operators. Results are shown
in Figure 2.

We can draw a lesson from these experiments: it is quite clear that there is
a high degree of fitness-distance correlation in the 2-opt landscape (0.94). This
means that the local search algorithm can rely on fitness values encountered in
order to get closer to the global optimum. This correlation between A, and
¢ has been observed in all experiments we realized. Furthermore, the more
cities in the instance, the higher the correlation between A, and ¢ (e.g. 0.99 for
tsp225). This gives an affirmative answer to a question in [4] about the existence
of non artifical problems exhibiting such a structure. We are confident that
most symetric, euclidean, planar TSP instances have very similar correlation
structures.

When plotting the same data with the city swap distance, A., one obtains
clouds with a worse fitness-distance correlation (0.86 for att{8), as can be seen
in Figure 3. Moreover, this value decreases with the instance size : 0.61 for
tsp225. We think this lack of FDC is the main reason that prevents a city-swap
HC from having as good performance as a 2-opt HC.

The huge majority of randomly generated starting tours (i.e. random per-
mutations) are situated in the right of Figure 3 pointed out by arrow 1. Starting



160000 T T T T T T T T T 160000 T T T T T T T T
edge-phi-attd8 o “city.phi.att8"

140000 [ $ 140000 [ o3
o8 § \ %
120000 - N ‘§ L 120000 - H
o
Lciie ogd
100000 |- JPRTICH ! H B 100000 |- [,
l ! 30 M
82
3,8
°
g %

Fithess.

80000 [ 80000 [

IR 1
8 o
60000 | g I .2 60000 | ° g °
° 3°§ ° g
§§ 8,8
134
:
oo ;ls
i

o

40000 [ 06 o o 3§;3 e

o *,0%es "’Zi%gg

PRI 1t
20000 e 033} gggizgg‘,o K
03 ¢ g N °
°§§:§30‘°300‘

5 0 15 20 25 30 3 4 45 50

0 2
Distance City swaps.

Fithess.

40000 [

Figure 3: Comparison of the fitness landscape for 2-opt-move (on the left, dis-
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Figure 4: A(start) against A(end)

out with random tours, the search begins at a big distance from the global op-
timum. The city-swap operator does improve the overall fitness, reaching the
region pointed at by arrow 2 on Figure 3. But this fitness improvement does
not decrease that much the distance from the global optimum relatively to the
A, distance. Furthermore regions pointed at by arrow 2 and 3 are separated
by a gentle slope that seems, in our opinion, unable to lead the HC towards
the optimum. In order to go deeper into this comparison, we have recorded the
distance to the global optimum for a set of random start points and their associ-
ated local optima obtained after a steepest descent HC run. This gives the plots
A(start) against A(end) for city-swap and 2-opt-move HC runs in Figure 4. It
is clear that the city-swap operator only slightly improves the distance. Even
worse, some end points are further in distance than the starting points, as can
be seen by comparison with the reference line y = x. This behavior can also
be observed in Figure 5, where complete walks of HC using steepest descent
strategy are plotted. The trajectories recorded accentuate the overall shape of
clouds, due to the steepest descent rule. Again, differences in final distance to
the optimum are clearly visible.
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Figure 5: Examples of 2opt and city swap HC walks on tsp225 instance. 2opt
HCs searches finish their trajectories on the left, city-swap HCs searches on the
right. 2opt trajectories are plotted for A, distance, city swap trajectories are
plotted relatively to the A, distance.

5 Conclusion and Future Works

In this paper, we investigate one aspect of the structure of the TSP problem. We
focus on the behavior of a hill-climbing algorithm using two different operators.
The fitness landscape, a metaphor taken from biology, helps us in figuring out
the topology of the research space where our algorithms travel. We conduct
benchmarks in order to gain a quantitative knowledge about these landscapes
and about the trajectories of HC walks.

Studying the results allows us to compare the city-swap and 2opt-move op-
erators on the basis of fitness-distance correlation relatively to known optima.
We observe a better FDC for 2opt move than for city swap. We argue that this
seems a powerful explanation for the difference in performance between these
two well-known operators. We show that a city-swap HC even if it improves
the starting points is not able to give tours near the global optimum relatively
to its own metric. We observe that 2o0pt move HC are able to come much closer
to the global optimum.

This last point is in accordance with Stadler’s conjecture [11] about the
existence of a “massif central” regrouping local optima in a area of restricted
size. This property could be exploited, as an example by recombining local
optima. On the opposite, local optima in the city-swap landscape are separated
by long distances.

In future work we will be aiming at:

e implementing intensifying search techniques on the massif central of 2opt
local optima;

e verifying if the same ideas are fruitfull on other problems, such as non-
symetric TSP and job-shop scheduling. This includes the modification of
operators for the job-shop scheduling in order to improve their FDC value,
and figuring out whether searches benefit from this;



e investigating further the structure of the search space of different kinds of
TSP (non-symetric, partial graphs).

Knowledge on fitness landscape should also provide us with clues to help in

designing good operators and representation.
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