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Abstract— Feature discovery aims at finding the best repre-
sentation of data. This is a very important topic in machine
learning, and in reinforcement learning in particular. Based
on our recent work on feature discovery in the context of
reinforcement learning to discover a good, if not the best, repre-
sentation of states, we report here on the use of the same kind of
approach in the context of approximate dynamic programming.
The striking difference with the usual approach is that we
use a non parametric function approximator to represent the
value function, instead of a parametric one. We also argue that
the problem of discovering the best state representation and
the problem of the value function approximation are just the
two faces of the same coin, and that using a non parametric
approach provides an elegant solution to both problems at once.

I. INTRODUCTION

In computer science, feature discovery, also known as
feature construction, stands as a topic of outstanding im-
portance, in particular in the fields of artificial intelligence,
optimization, and machine learning; it considers the problem
of finding the best, or at least, a good, or not too bad,
representation of data [1]. Two reasons can be stated for
employing feature discovery. First, in some cases, we have
to represent some objects, and we have to represent them by a
set of features that hopefully describe the object well enough
so that the algorithm handling it will also perform well: this
is the case where we do not know exactly how to represent
the object so as to perform the task, within a reasonable
amount of CPU-time; this is the case in many games for
instance, such as Go, or card games, or even video games.
Second, in other cases, we want to solve a problem for
which we have formal properties that guarantee that we have
enough information to effectively solve the problem; but,
we also know that adding more information will make the
actual resolution faster; this is the case when solving Markov
decision problems in which we know for sure that the state is
fully described, and that an optimal policy may be obtained;
however, experimental evidences show us that better policies
may be obtained faster if the state is enriched with extra
information. For example, consider the problems that deal
with the control of a dynamical system following Newton’s
law: we know that its state is given by its current position
and velocity, and that an action provided as an acceleration,
perfectly defines the next state; this information is enough
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to learn an optimal policy. For instance, let us consider the
cart-pole problem in which a pole is fixed to a moving cart
and it can revolve around this fixed point. A horizontal force
may be applied to the cart in either direction; starting from a
given position (x, θ) and velocity (ẋ, θ̇), the goal is to get the
pole in upright position, in an equilibrium state (see Fig. 1);
though the state (x, ẋ, θ, θ̇) is enough to compute, or learn,
an optimal policy, it is well-known that enriching the state
with cos (θ) and sin (θ) greatly accelerates learning a good
policy (see [2]).
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Fig. 1. The cart-pole problem.

So, we are left with finding this useful information to
enrich the state representation. Before going further, we
would like to emphasize that for us, what really matters here
are “practical” reasons, at least in the case of MDPs for
which we know we have adequate information in the state
to learn, and represent an optimal policy. Indeed, for this
kind of problems, we know for sure that we can compute an
optimal policy, and we have different classes of algorithms to
achieve this goal. Our point here is that we aim at obtaining
the same kind of policy, that is, policies with identical quality,
but using fewer computational resources, in particular CPU
time. So, we will be dealing with optimizing the learning
curve of an algorithm, not making possible the acquisition
of an optimal solution. This aim would surely benefit from
a relevant formalization of learning curves, but there is no
such thing in the current state of the art; it would indeed be a
great achievement to have one. In the meantime, less formal
approaches are still worthy.

While finding the best representation of states can be done
by a human expert, we think it worthwhile to study how this
can be automated for various reasons: first, it is not easy, even
for an expert, to find a good representation as the complexity
of the problem increases, and an automatic tool may, to the
least, help him, or her; second, pursuing the goal of having a
software to learn optimal policies to be used by non experts,
the ability to discover a good representation of states would
definitely be an appreciated feature of this software.

Now, we would like to detail what we mean by this
information we want to add to the state representation.



Assuming a Markov decision problem (MDP)–Newtonian
systems are good examples of the kind of systems we wish
to deal with here and, to make our presentation clearer, we
will assume that kind of systems, though our work applies to
other kinds of MDPs–, a state can be assumed to be a vector
of P real components (P = 4 for the cart-pole problem
mentioned above). Then, we want to add components to
the state variables; obviously, assuming we have no other
source of information on the state except for these P state
variables, the information we can add may only be non
linear mappings of these state variables1. Such a non linear
mapping is called a feature. So, in some way, given a set of
state variables, we can define all those features, and choose
the useful ones. Facing such an infinite amount of potential
features is obviously not possible, so we have to restrict our
search to some classes of such non linear mappings.

To tackle the problem of learning a value function on
a continuous domain, it is inevitable to use a function ap-
proximator. Many kinds of such function approximators have
been proposed since the seminal works by mathematicians
in the XIXth century. Today, in machine learning, neural
networks, and kernel methods are very popular: provided an
input (the representation of a state in this paper), the func-
tion approximator outputs a certain real value; the function
approximator has to be trained, or fit, so that the output is
the expected one, given an input, and that, for all possible
inputs in a certain domain. We may categorize function
approximators in various ways; for our purpose here, the
relevant categorization is that of parametric vs. non paramet-
ric function approximators. Let us precise what we mean by
these words, since these are used with various meanings. A
parametric function approximation has a fixed architecture
and the training phase aims at finding real weights; this
fixed architecture does not depend on the data that are
actually used during training, only the weights depend on
them. A non parametric function approximator does not have
a fixed architecture: training involves finding weights and
the architecture itself: this architecture evolves according to
the data that are actually observed. For instance, a radial
basis function grid (RBF-grid), or a traditional multi-layer
perceptron (MLP) is a parametric function approximation,
whereas a cascade-correlation network (CCN) [3] is a non
parametric one.

Strictly speaking, using a parametric function approxima-
tion makes sense only if we have a good idea of what the
function to represent looks like, or more formally, if we have
a good idea of its regularities, and singularities. Indeed, with
a fixed architecture, the set of functions that can be well
approximated up to a certain accuracy is restricted; while
the set of all MLPs do have the universal approximation
property, once we have chosen a single MLP to work with,
it is not able to approximate with an arbitrary accuracy, any
arbitrary function; the common practice is then to choose
an MLP such that its architecture is complex enough to be

1In most cases, linear mappings will be redundant due to the algorithms
and/or function approximators being used.

able to represent the (expected, or assumed) complexity of
the function to be learned, opening the way to over-fitting
among other problems.

To the opposite, a non parametric function approximator
is ideal when the function to be learned is not known
beforehand. The learning algorithm is then capable to make
the architecture more complex, as required during learning,
to cope with the singularities of the function under learning.
The idea is very simple: starting with the most simple
architecture, when unable to fit the data up to the expected
degree of accuracy, the algorithm makes the architecture a
little more complex to cope with this lack of precision2.

In mathematical terms, in the parametric approach, we
search for the best value of (scalar) parameters of a given
estimator function, whereas in a non parametric estimator,
along with the same parameters optimization, we allow
ourselves to add new terms to the function. While the
mathematics of parametric function approximation is well
developed, those of non parametric function approximations
is far less developed; this is clearly a drawback of this
approach, since we can not hope (yet) to take advantage of
interesting formal properties.

Adding a new term to a non parametric function ap-
proximator turns out to add a non linear mapping of the
input variables. So, that is exactly what we named a feature
above, and so, we can consider a non parametric function
approximator as a way to enrich the representation of data:
when the approximation algorithm finds it suitable, e.g. when
the precision is not as high as expected, it adds a new feature;
thus, the features that have been added along a learning
process may be considered as the useful information we
wish to discover. So, we see that when we consider non
parametric function approximation, the approximation of the
learned function, and the acquisition of a good representation
of the data are really the two faces of the same coin.

In the sequel, we will thus present this approach. Section
II essentially introduces our notation, and a very synthetic
background on approximate dynamic programming. Then, in
Section III, the two non parametric function approximators
we use in our work are presented. The “Equi-Correlated
Network” (ECON) belongs to the family of kernel methods;
the other one is the cascade-correlation networks. Then,
Section IV describes our approach, aiming at embedding
a non parametric function approximator into an adaptive
dynamic programming algorithm. Section V presents some
experimental results. Section VI concludes and discusses
future work.

II. BACKGROUND

In this section, we provide background material on Markov
decision problems, and approximate dynamic programming.
The section on MDPs serves only as a mean to define our
notations. The section on approximate dynamic programming

2Note that, this process cannot repeat indefinitely as it will hinder
generalization and lead to over-fitting.



is very synthetic. If necessary, the reader is kindly invited to
check one of these following references [4], [5], [6].

A. Markov decision problems

We consider MDPs defined on a discrete or continuous
state space, with a discrete action space, and in discrete time.
We only consider MDPs in which the goal is to optimize the
sum of discounted rewards.
• T denotes the set of instants, t ∈ T its elements,
• X denotes the state space, x ∈ X its elements; in this

paper, X is a subset of RP for some P which we name
the dimension of the state space,

• A denotes the action space, which is assumed to be
discrete in this paper, a ∈ A its elements,

• P denotes the transition function: X ×A×X 7→ [0, 1],
P(x, a, x′) = Pr[xt+1 = x′|xt = x, at = a],

• R denotes the reward, or cost, function: X ×A×X 7→
R, R(x, a, x′) = E[xt+1 = x′|xt = x, at = a], where
E denotes the expectation operator,

• rt denotes the particular reward, or return, or conse-
quence, or outcome, ... that has been received at instant
t: r is a realization of a stochastic process which mean,
for each (x, a, x′), is defined by R,

• γ ∈ [0, 1) is the discount factor,
• a policy is denoted by π, and we consider either

deterministic policies π(x), stochastic policies π(x, a),
• the objective function to optimize is denoted by J : here,

we deal only with J(x) ≡
∑
t=0 γ

trt|x0 = x.
We can consider the problem with all these information

available: this is known as a planning problem, and dynamic
programming methods are the celebrated way to solve it. We
can also consider settings in which the transition function, or
the reward function, is unknown: this is known as the learn-
ing problem, and we have currently two main approaches,
namely, temporal difference (TD) learning, and direct policy
search (DPS). These two methods are basically actor-critic
approaches, the focus being put on the critic in TD learning,
whereas being put on the actor in the DPS. In these cases,
since no model of the environment is available, learning takes
place by means of interactions with the environment (or a
simulator of it).

All these approaches either learn, or compute, a value
function, or directly a policy. To face continuous, or large
discrete, state spaces, these approaches rely on a function
approximator to represent these functions. To meet with the
introductory discussion of parametric and non parametric
function approximators, most works to date have dealt with
parametric function approximators, though interesting non
parametric approaches have also been published. We have
yet tackled the case of the learning problem–either value-
based [7], or by direct policy search [8]–, so we focus on
approximate dynamic programming approaches in this paper.

B. Approximate dynamic programming

Approximate dynamic programming (ADP) is a well-
known dynamic programming approach to deal with large,

either discrete, or continuous, state spaces. ADP basically
comes in two flavors, either relying on the value iteration
algorithm, or the policy iteration approach. In either case,
the ’A’ in ADP involves using a function approximator to
represent the value function, and derive a policy from it.

1) Approximate Policy Iteration: (API) is the policy iter-
ation algorithm in which a function approximator is used to
represent the value function. So, instead of having an exact
representation of the value function of the current policy, we
only have an approximate representation of it. So, starting
with an initial policy π0, API alternates the two phases:
• Approximate policy evaluation: approximation of the

value function of πk, V πk , which yields ˆV πk

• Policy improvement: based on V πk , compute a greedy
policy πk+1.

The state space being assumed possibly infinite, the eval-
uation of V πk relies on a set of sampled states. Variants are
possible, and we refer the reader to relevant references, such
as [5], [6] for more details.

For the same reason, the policy improvement can not be
performed explicitly, and thoroughly. Instead of that, this step
may be made implicit by computing the optimal action in
states for which it is required, yielding some implicit πk+1.
This optimal action is the greedy action, based on V πk .

2) Approximate Value Iteration: (AVI) is the value itera-
tion algorithm in which the value functions are represented
using a function approximator. So, given a current estimation
of the value function V̂k, we estimate the result of applying
the Bellman operator on this function on a set of samples;
from these estimations, we perform a regression to obtain a
new estimate ˆVk+1.

3) Feature discovery in ADP: The use of features instead
of raw variables have been advocated for very long. The use
of a compact representation of states by way of a set of
features has been studied from a theoretical point of view by
[9]. However, this work does not deal with the problem of
feature discovery itself.

As us, some authors have proposed that feature discovery
and function approximation are very closely related. [10]
deals with two problems defined on a discrete state space
(tic-tac-toe, and the 8-puzzle). [11] deals with the supervised
learning setting.

More closely related to our work, [12] studied automatic
basis function construction for value function approximation.
Given a set of trajectories and starting from an initial
approximation, they iteratively use neighborhood component
analysis to find a mapping from the state space to a low-
dimensional space based on the estimation of the Bellman
error, and then by discretizing this space aggregate states
and use the resulting aggregation matrix to derive additional
basis functions. This tends to aggregate states that are close
to each other with respect to the Bellman error, leading to
a better approximation by incorporating the corresponding
basis functions.

[13] considers feature selection as a supervised classi-
fication problem, within the context of approximate value



iteration. Their approach is thus also very different from ours.

III. NON PARAMETRIC FUNCTION APPROXIMATION

At this point, we discuss the non parametric function
approximators. Among the many variants that have been
published, a particularly important class is that of kernel
methods. An other non parametric function approximator is
the cascade-correlation networks. We shortly describe both
approaches below.

A. Kernel methods

Kernel methods are indeed very old ideas from statis-
tics. Nearest neighbors, and Parzen windows are closely
related, and kernel methods are actually descendants of those
techniques. Given a function to be learned V : X 7→ R
from a set of N examples, that is N couples (xi, yi), a
kernel method aims at finding an approximator V̂ of the
form V̂ (x) =

∑
j ωjk(x, xj), where the set of xj is a

subset of the example set, the ωj’s are real parameters,
and k, a kernel function, that is merely a function defined
as X × X 7→ R. Such a function can best be considered
as a distance, or a dissimilarity function; we may impose
certain conditions on k3 such as symmetry, and positive
definitiveness4, but we do not make this kind of assumptions
here. Now, the non parametric aspect comes into play as the
sum of terms defining V̂ is changing over time; initially very
simple, maybe a mere constant, new terms are added, and
possibly removed, from the sum as examples are acquired.
To avoid having as many terms in the sum as the number
of examples, regularization techniques may be employed to
balance the number of terms in the sum, and the accuracy
of the prediction made by the approximator.

Stated with words, such kernel methods can be seen as
one hidden layer perceptrons, the input of the perceptron
being the state variable, the hidden units being these ker-
nel functions, and the output being linear. Starting from a
network with no hidden unit, new hidden units are added
incrementally, as needed. Excellent performance have been
obtained in supervised learning, classification, and regression
[14], [15], as well as in reinforcement learning (see e.g. [16],
[17] as representators of two different approaches of this
same idea, in the context of reinforcement learning). This can
also be seen as an RBF-based algorithm, where the number,
the center, and the hyper-parameters of the basis are not set
a priori, but evolves during learning.

In the next section, we very briefly describe an algorithm
we have introduced, namely the Equi-Correlated Network,
which is a descendant of, and a significant improvement over,
the Equi-Gradient descent algorithm [17].

3Certain authors do impose these conditions on the name “kernel” method,
but we do not share this point of view.

4Meeting these conditions for k opens the door to inheriting very nice
mathematical properties, which in turn, may be turned into, more or
less, efficient algorithm, in particular, optimizing algorithm that converges
towards an optimum guaranteed globally optimal.

1) The Equi-Correlated Network: The Equi-Gradient Al-
gorithm is a supervised learning algorithm based on the
idea of the LARS algorithm [18]. Originally proposed in
a supervised learning setting, this algorithm has been later
applied to feature discovery, and kernelized. Then, it has been
cast to the reinforcement learning framework, leading to the
Equi-Gradient Descent algorithm [17]; since then, it has been
enhanced in order to automatically tune the kernel function
(hyper-)parameters [19].

The basic idea is a strict application of the principle of
kernel methods stated above: given a set of examples, an
estimator is built incrementally, in the form

∑
j ωjkj , the

kernels being added, or removed, one at a time. The objective
function is composed of two terms: one is the l2 error
measure on examples, while the second is an l1 regularization
on the ω’s; these two terms are combined by way of a regular-
ization coefficient λ which gives more or less importance to
either of these two criteria. To avoid choosing this parameter
a priori, the LARS algorithm has been proposed which,
very efficiently, computes the whole regularization path, that
is, the set of all solutions (λ,Ω), where Ω denotes the set
of the coefficients ω of the estimator matched to λ. This
set is actually finite. Using an l1 regularization, we obtain
very sparse solutions, that is, a function approximator that
has a rather small number of terms (one property of the l1
regularization with regards to l2 is that, instead of keeping
ω’s as almost 0, most of the parameters are actually zero-ed).
These non null terms are associated to features, the associated
kernel function, and so, the LARS ends-up selecting the most
relevant features to approximate a certain set of examples.

Typically Gaussian, the kernels have their covariance
matrix to be tuned. In [19], the Equi-Corrleation Network
(ECON) algorithm is proposed, which performs a global
optimization to tune it automatically, using a global opti-
mizing algorithm named Direct [20]. So, ECON provides an
estimator in which the number of terms is minimized, and
the hyper-parameters of the kernel are optimized.

B. Cascade-correlation networks
An other kind of non parametric function approximator is

the cascade-correlation network architecture, introduced by
[3]. In a CCN, the hidden units are again added one at a time,
as required to meet an expected accuracy; however, instead
of forming a mere sum, the hidden units are cascaded (see
Fig. 2).

The growth of a CCN may be briefly summarized as
follows:

0) Create P input nodes, 1 output node (with linear acti-
vation function) and connect the inputs to the output.

1) All connections leading to output neurons are trained
on a sample set and corresponding weights (i.e., only
the input weights of output neurons) are determined by
using an ordinary learning algorithm (such as “delta”
rule, here we use the RPROP) until the error of
the network no longer decreases. Note that, only the
input weights of the output neuron are being trained,
therefore there is no back-propagation.
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Fig. 2. Illustration of the growth of a cascade-correlation network. Initially
(a), the CCN has only an input layer (here made of two inputs i1, and i2) and
an output o (in gray). Both input, and output units may be either linear, or
non linear. Then, if the accuracy of this network is below a given threshold,
a hidden unit is added according to the procedure detailed in the text (b).
Iteratively, as long as the expected accuracy is not reached, one hidden unit
is added, one after the other (c). At each iteration of the growth, only the
weight of the connections to the output node is trained (dashed connections),
while the others are frozen once for all (solid connections). We see on this
sketch that only the connections to the output node are trained, so that no
back-propagation is required.

2) If the accuracy of the network is above a given thresh-
old then the process terminates.

3) Otherwise, a set of candidate units is created. These
units typically have non-linear activation functions,
such as sigmoid or Gaussian. Every candidate unit is
connected with all input neurons and with all existing
hidden neurons (which is initially empty); the weights
of these connections are initialized randomly. At this
stage the candidate units are not connected to the out-
put neuron, and therefore they are not actually active
in the network. Let s denote a training sample. The
connections leading to a candidate unit are trained with
the goal of maximizing S, the correlation between the
candidate units value denoted by vs, and the residual
error observed at the output o denoted by es,o. S is
defined as S = |

∑
s(vs−v)(es,o−eo)| where v and eo

are the values of vs and es,o averaged over all samples,
respectively. As in step 1, learning takes place with
an ordinary learning algorithm by performing gradient
ascent with respect to each of the candidate units
incoming weights ∂S/∂wi =

∑
s,o(es,o − eo)σof ′sIi,s

where σo is the sign of the correlation between the
candidates value and output o, f ′s is the derivative for
sample s of the candidate units activation function with
respect to the sum of its inputs, and Ii,s is the input
the candidate unit received from neuron i for sample
s5. The learning of candidate unit connections stops
when the correlation scores no longer improve or after
a certain number of passes over the training set. Now,
the candidate unit with the maximum correlation is
chosen, its incoming weights are frozen (i.e. they are
not updated in the subsequent steps) and it is added
permanently to the network by connecting it to the
output neuron (Fig. 2b and c, solid lines show frozen

5Note that, since only the input weights of candidate units are being
trained there is again no need for back-propagation. Besides, it is also
possible to train candidate units in parallel since they are not connected
to each other. By training multiple candidate units instead of a single one,
different parts of the weight space can be explored simultaneously. This
consequently increases the probability of finding neurons that are highly
correlated with the residual error.

weights). All other candidate units are discarded.
4) Return back to step 1.
Until the desired accuracy is achieved at step 2, or the

number of neurons reaches a given maximum limit, a CCN
completely self-organizes itself. By adding hidden neurons
one at a time and freezing their input weights, training of
both the input weights of the output neuron (step 1) and the
input weights of candidate units (step 3) reduce to one step
learning problems. By training candidate nodes with different
activation functions and choosing the best among them, it is
possible to build a more compact network that better fits the
training data6. In this setting, each hidden node becomes
a feature and the network itself acts as a linear function
approximator based on these features.

[21] advocates for the use of CCN to solve the rein-
forcement learning problem on-line. Dealing with a bit more
elaborated CCN than us, it is shown that a CCN using much
less hidden units than a multi-layer perceptron, and even
much less units that a RAN, often provides better policies.

C. Conclusion on non parametric function approximators

We have presented two different non parametric function
approximators. Let us add that both are stochastic algorithms.
Despite their differences, the crucial point we wish to make
here is that the hidden units being added, or removed, corre-
sponding to terms being added, or removed from V̂ , can be
seen as features induced by the approximator. These features
are added when the complexity of the examples can not be
met by the current architecture of the approximator. In turn,
in (some of) the kernel methods, features are automatically
removed as soon as they become unnecessary.

This entire process is well-matched to our goal of deter-
mining a set of good basis functions for function approxi-
mation in ADP.

One last remark: both CCN and ECON yield a linear
function approximator, which is more stable than a non
linear approximator, and easier to train. Yet, using non linear
functions as basis functions, we keep the ability to represent
highly non linear functions.

IV. NON PARAMETRIC FUNCTION APPROXIMATION AND
APPROXIMATE DYNAMIC PROGRAMMING

In this section, we discuss the embedding of a non
parametric function approximator into an approximate value
iteration algorithm. This discussion will be quite short since
it simply amounts to tie things together, i.e. the non para-
metric function approximators, and the approximate dynamic
programming algorithms together.

A. Non parametric function approximation and Approximate
Value Iteration

The AVI may be sketched as follows:
• k ← 0

6Furthermore, with deterministic activation functions the output of a
neuron stays constant for a given sample input; hence, the number of
calculations in the network can be reduced by storing the output values
of neurons, improving the efficiency compared to traditional networks.



• initialize a regressor: this implicitly initialize a first
estimate of V̂k, at random,

• build a set of sample states S,
• while some condition unfulfilled, iterate:

– k ← k + 1
– for each x ∈ S, compute

W (x)← maxa
∑
x′

P(x, a, x′)[R(x, a, x′)+γV̂ (x′)]

– regress data (S,W ): this yields the new V̂k.
In the sequel, we name the while loop the ADP iterations,

to distinguish them from the iterates made during the regres-
sion.

At the end of this algorithm, we get the greedy policy
based on the last estimate of the value of the optimal policy,
V̂k.

The determination of the set of sample states is a delicate
point. It may be done very easily by using the states located at
the intersection of a regular grid on the state space. However,
it is clear that a non regular location would in general be
much better, so that sample states are located in “important”
areas of the value to compute. Nonetheless, this requires
some knowledge on this function that we do not know, and
it turns out that the determination of the best location of the
sample states is as difficult as computing the function itself.
In the sequel, we thus resign ourselves to use a set of samples
located at the intersection of a regular grid.

V. EXPERIMENTAL ASSESSMENT

In this section, we report on the application of the proposed
approach on a continuous Markov decision problem, namely
the inverted pendulum, which is closely related to the cart-
pole problem discussed in the introduction. This part only
contains preliminary results, but we think that they are quite
interesting, and significant.

A. Settings

For the inverted pendulum problem (see Fig. 3), the state
space is X ≡ {(θ, θ̇) ∈ [−π, π] × [−3π, 3π]}, 3π being
considered as a maximum angular velocity. There are two
actions, A = {−5,+5}, in ISO units. The system is deter-
ministic; the reward function is defined as R(x, a) = cos (θ).
The time is discretized into steps of 0.03 s. We follow exactly
the definition of the problem used in [22], the only difference
being that we consider a discrete set of instants, that is
T ⊂ N. In all experiments, the discount factor is set to 0.9.

Fig. 3. The inverted-pendulum problem.

We run the algorithm, and assess the result by measuring
the performance of a policy which is greedy for the cur-
rent estimate of the value function, on a trajectory of 250
steps. Each test trajectory begins with the pendulum in a
downward position, with null velocity (i.e., θ = π, θ̇ = 0).
We report the sum of the rewards, undiscounted to better
distinguish between good and bad trajectories: indeed, even
with an optimal policy, it takes some iterations to reach the
equilibrium position so that even if a perfect equilibrium
follows, the fact that the reward would be discounted by a
very small number would make it difficult to interpret results.
With this measure, 250 is obviously a upper bound, since it
does not take into account the sub-optimal states that have to
be visited between the initial position, and the equilibrium
position. -250 is the lower bound, which could be reached if
the pendulum remained at its initial position.

During ADP, the estimation of the value function is made
by computing the value of a set of states, located on a
grid which ∆θ = ∆θ̇ = π/10, that is 1400 sample states.
We perform 50 ADP iterations. Regarding the AVI+CCN,
each iteration is made of 15 phases of growth, each phase
selecting the best out of 15 candidate nodes. So, this means
that each value function is represented by a CCN with 15
hidden nodes. Regarding the AVI+ECON version, at each
iteration, the ECON regressor is run until it can no longer
improve its accuracy, 100 steps to the most. This means that
the value function is represented by at most 100 terms.

B. Results obtained with the AVI+CCN algorithm

For the AVI+CCN version, Figure 4 shows some typical
results. The performance of the greedy policy with regards to
the current estimate of the value function is plotted against
the iteration. This shows four things:
• after just a few iterations (5 on the plot), a very good

performance of 216 is reached,
• extremely sharp changes in performance between two

subsequent ADP iterations,
• the performance basically oscillates,
• the performance is never below 0.
So, we keep in mind that a quite very good approximation

is obtained very quickly, and that this approximation only
requires 5 hidden units. The oscillations are very likely due to
the fact that we are using a function approximator (whether
non parametric or parametric does not matter here). This
behavior has to be investigated further. It may also be due
to the small number of candidate units (only 15).

We have tried to lessen the number of sample points that
are used to regress the value function of the current policy.
With only 250 samples, 30 ADP iterations of 5 iterations
each, choosing the best candidate among 6 also yields good
performance very fast: after 11 such ADP iterations, so using
11 hidden units, a performance of 216 is obtained.

Finally, it is interesting to compare these results obtained
on the planning task, with the results obtained on exactly
the same task, but in a learning setting. For the learning
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Fig. 4. Performance of the ADP+CCN algorithm on the inverted pendulum
task. The x-axis shows the ADP iteration, that is also, the number of hidden
units in the CCN; the y-axis is the performance of the resulting greedy
policy, where the maximum that may be obtained is 250. Two striking points
are: policies performing very well are obtained very quickly, hence with
small CCN; the performance is rather unstable along ADP iterations. See
text for more explanations, and comments.

task, a CCN represents the current value function, embedded
into LSPI (see [7] for more details). We also compare
the performance obtained with a parametric approximator
embedded into LSPI, namely a regular grid, made of 514
RBF. Using 5000 samples, the learning with a regular RBF
grid (parametric) representation of the value function led
to a performance of 91; using the same 5000 samples,
the LSPI with CCN embedded led to a performance of
approximately 120, with 40 hidden units. These figures are
thus to be compared with the aforementioned performance
of 216, obtained by a CCN with 15 hidden units, after 5
iterations, in the planning setting.

C. Results obtained on the AVI+ECON algorithm

In the ECON, we use multi-dimensional Gaussian kernels
only, so that the (hyper-)parameters are made of the entries
of the covariance matrix. We run different variants of the
ECON algorithm:
• BASIC ECON: which does not perform kernel function

parameter tuning: we have to provide a parameter σ
and the covariance matrix of all the kernels is set to
σI , where I is the identity matrix,

• ISO ECON: which tunes the parameters of each Gaus-
sian kernel, keeping its shape symetric: so the covari-
ance matrix is again a multiple of the identity matrix,
σI , but the coefficient σ is tuned automatically,

• DIAG ECON: in which the Gaussian kernels are no
longer restricted to symetric ones; the covariance matrix
is still diagonal, but no longer a multiple of the identity
matrix, hence of the form diag(σ1, σ2, ...σP ).

We expect that the versions tuning the parameters perform
better, the non symetric one (DIAG) even better than ISO.

That is exactly what we obtained experimentally. Figure
5 shows that the BASIC version performs quite bad, ISO
better, and DIAG performs the best. If we focus on the DIAG
variant which performs the best, we see that the performance
of the greedy policy with regards to the current value function

estimate basically steadily performs better and better; this is
a striking difference with what we observed when using the
CCN, where larger, and more irregular, oscillations were ob-
served; with the ECON, the more ADP iterates, the better the
policies. In particular, during the second half ADP iterates, a
majority of iterates yield reasonably well-performing policies
(accumulated rewards, along a trajectory of 250 steps, lie in
the range 100-150). However, the best policies found by the
ECON are not as good as those found with the CCN; as can
be seen by comparing Figures 4 and 5, ECON has not been
able to yield policies performing better than 127, while it
often occurs that the policy found with the CCN is above 200.
We have not yet any explanation about that; maybe ECON
needs more ADP iterations than CCN to yield such good
policies; maybe the function approximated by the CCN better
fits the value function of the inverted pendulum, than the one
provided by a ECON. We also noticed that the best policies
are obtained by ECON using 100 kernel functions (the limit
number we had set); this is also in striking difference with
the CCN which yields much better performing policies with
only 5 hidden units. To investigate this issue, we have run
both CCN and ECON algorithms as mere regressors, on a
very good approximation of the optimal value function of
this problem. After each iteration of the algorithm, that is
after adding one hidden unit to the CCN, or one kernel to
the ECON, we measure the mean squared error. The result
is displayed at Figure 6: it is striking how the CCN obtains a
very accurate approximation of the function after just a few
iterations, whereas ECON never reaches the same accuracy,
even after 300 iterations.
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Fig. 5. Performance of three variants of the AVI+ECON algorithm on the
inverted pendulum task. As in figure 4, the x-axis shows the ADP iteration,
and the y-axis is the performance of the resulting greedy policy, where the
maximum that may be obtained is 250. 3 variants of ECON are plotted. The
best variant (DIAG) shows more stability than the CCN version; however,
the performance is less here than with the CCN version. See text for more
explanations, and comments.

D. General remarks about the experimental results

As features are discovered, it would be interesting that
they make sense for a human being. As it is clear from the
form of the estimator that yield the CCN, and the ECON, the
hidden units of the CCN are extremely difficult to interpret.
The situation is very different with the ECON; indeed, as a
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Fig. 6. We consider the task of regressing the inverted pendulum optimal
value function with the CCN, and the ECON and we plot the MSE against
the iteration of the algorithm. CCN yields a high accuracy after a very small
number of iterations, and this accuracy is consistently much higher than with
the ECON algorithm. See text for more details..

mere sum of Gaussians, the kernel location and shape may be
understood quite easily; these are very well correlated with
the flatness and ridges of the function being regressed.

One last word about computational time: for both algo-
rithm, it is rather fast, 50 AVI iterations being run in about
one minute on a standard 1.6 GHz laptop, except for the ISO
and DIAG which are an order of magnitude slower.

VI. CONCLUSION AND FUTURE WORK

In this paper, we first argued that the function approxima-
tion problem, and the feature discovery problem may best
be seen as being the two faces of the same coin. Based on
that, we put forward the non parametric function approxi-
mators which, despite the lack of strong theoretical basis,
have demonstrated excellent performance in various areas of
machine learning. Following our work on the reinforcement
learning problem, we discussed how such an approximator
may be embedded into approximate dynamic programming.
Then, some experimental results were provided, obtained
by an approximate value iteration algorithm, either with
a cascade-correlation network embedded in it, or a kernel
method we designed, named ECON; in each case, the non
parametric function approximator represents the value func-
tion by selecting useful features. These experiments show
that this approach is able to obtain very fast good policies,
using a very sparse representation, made of a few hidden
units.

Various tracks will be followed in the near future. We will
first complete the experimental assessment of our proposi-
tions, by making it more thorough, and on different problems.
We will also study different variants of the approximate
dynamic programming algorithm, only the simplest one
having been studied here. In particular, we would like to
tackle larger state spaces. One aspect of feature discovery is
to provide features that may be understood by human beings:
it is clear that the cascaded hidden units of a CCN do not
meet this expectation. In a kernel method, the features are
merely weighted and added up to make the estimation, not

cascaded, so that it is possible to get some information from
their location in the state space, and their shape.
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