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Abstract

We introduce gym-DSSAT, a gym environment for crop
management tasks, that is easy to use for training Rein-
forcement Learning (RL) agents. gym-DSSAT is based on
DSSAT, a state-of-the-art mechanistic crop growth simulator.
We modify DSSAT so that an external software agent can in-
teract with it to control the actions performed in a crop field
during a growing season. The RL environment provides pre-
defined decision problems without having to manipulate the
complex crop simulator. We report encouraging preliminary
results on a use case of nitrogen fertilization for maize. This
work opens up opportunities to explore new sustainable crop
management strategies with RL, and provides RL researchers
with an original set of challenging tasks to investigate.

Introduction
During a growing season, a farmer performs a sequence of
operations in her field in order to reach certain production
objectives (Sebillotte 1974, 1978). She makes these deci-
sions under uncertainty, like unknown weather changes. Re-
inforcement Learning (RL) addresses such problems where
an agent learns to control the evolution of an unknown and
uncertain dynamical system, in order to perform a given
task (Sutton and Barto 2018). In RL, addressing a complex
real-world problem usually starts with the use of a high-
fidelity simulator which mimics real learning conditions.
We present gym-DSSAT, an RL environment based on a
celebrated high-fidelity crop model, the Decision Support
System for Agrotechnology Transfer (DSSAT, Hoogenboom
et al. 2019) crop model.

Learning sustainable crop management practices is not a
trivial task. For example, nitrogen fertilization requires min-
imal rainfall and temperature following the application for
the fertilized nitrogen to become available to plants. Future
meteorological conditions are not known with certainty at
the time of fertilization decisions. For an efficient nitrogen
fertilizer management, available nitrogen in soil must match
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plant uptake, both in time and quantity (Meisinger and Del-
gado 2002). RL is an appealing approach to help decision-
makers to learn more sustainable crop management practices
(Binas, Luginbuehl, and Bengio 2019; Gautron et al. 2022a)

Contributions. We introduce gym-DSSAT, a crop man-
agement simulator to be used to train RL agents based on
the DSSAT crop model system. gym-DSSAT features three
predefined problems. We provide preliminary experimental
results indicating that RL is an interesting way to discover
original and efficient crop management strategies. As an-
other contribution, Gautron et al. (2022b) details the original
methods that we designed to turn DSSAT –a large mecha-
nistic model written in Fortran–, into a Python gym envi-
ronment (not discussed in this article). More information is
available on gym-DSSATGitLab1, including installation in-
structions for various operating systems, or tutorials.

Related works. The first case of an RL agent interacting
with a crop simulator in order to learn crop management is
found in Garcia (1999). The author used a modification of
the Déciblé crop model (Chatelin et al. 2005). The RL
agent learned wheat sowing and nitrogen fertilization un-
der pollution constraints. During simulations, weather se-
ries were stochastically generated. The modified version of
Déciblé is not available anymore. In Garcia (1999), the
RL agent did not manage to outperform the crop manage-
ment policy of an expert. Recently, several works directly
used crop models or surrogate models as RL environments
(e.g. Sun et al. 2017; Wang, He, and Luo 2020; Chen et al.
2021). However, none of these works has provided an open
source and standardized crop management RL environment.

Overweg, Berghuijs, and Athanasiadis (2021) proposed
CropGym, a gym interface to train an agent to per-
form wheat nitrogen fertilization. The environment uses the
Python Crop Simulation Environment (PCSE) LINTUL3
(Shibu et al. 2010) wheat crop model. Fertilization is treated
as a weekly choice of a discrete amount of fertilizer to ap-
ply. In CropGym, simulations use a limited set of historical
weather records, which may favor overfitting due to limited

1Repository: https://gitlab.inria.fr/rgautron/gym dssat pdi/



randomness, compared with the use of a stochastic weather
generator, especially for data intensive algorithms used in
deep RL.

Formalizing decision-making problems in RL
In most cases, RL uses the Markov Decision Pro-
cesses (MDP, Puterman 1994) formulation of the environ-
ment. An MDP defines a class of controllable dynamical
system. An agent learns to control the system to optimize
a certain objective function J . At each discrete time step
t ∈ {1, 2, · · · , N}, N ≤ ∞, the system is in some state
st ∈ S in which one action at from a set of actions A is
performed by the agent. Then, the system transits into its
next state st+1 according to a transition function p(s, a, s′),
which specifies the probability of the system to transit to
state s′ after action a was performed in state s. After an ac-
tion at has been performed, a return rt ∈ R is provided
to the agent according to the return function r(s, a, s′). The
goal of an RL agent is to learn an optimal policy π⋆(s) that
specifies which action should be performed in each state, in
order to optimize J . For example, when N <∞, the objec-
tive function can be defined as the sum of returns:

J =

N∑
t=1

rt (1)

In RL, neither p nor r is known. The agent learns an optimal
policy by interacting with its environment, i.e. the dynami-
cal system to control. The agent tries actions to learn their
consequences and, progressively, focuses on the best actions
to perform to maximize J . Current state-of-the-art RL algo-
rithms are known to be actor-critics, such as PPO, A2C and
SAC (Kiran et al. 2021).

gym environments. OpenAI gym (Brockman et al. 2016)
is an open source toolkit initially developed by the Open AI
company. It provides light RL environments with a standard-
ized Application Programming Interface (API). gym API
became a reference in the RL community to create standard-
ized RL environments in order to compare performances
of RL algorithms. The user interacts with the environment
through standardized methods. The agent interacts with the
environment by calling the step() method with an argu-
ment at specifying the action to take, in order to receive st+1

and rt. Objective function J is flexibly defined by the user.

Crop management problems in gym-DSSAT
By default, gym-DSSAT simulates a maize experiment
which has been carried out in 1982 in the experimental farm
of the University of Florida, Gainesville, USA (Hunt and
Boote 1998). An episode lasts a simulated growing season.
A simulation starts prior to planting and ends at crop harvest,
which is automatically defined as the crop maturity date.
Crop maturity depends on crop growth, which depends it-
self on crop management and weather events, and the time
to reach it is stochastic. During a growing season (160 days
on average), an RL agent daily decides on the crop manage-
ment action(s) to perform: fertilize and/or irrigate. By de-
fault, for each episode, the weather is generated by the WGEN

Action Description Range
fertilization nitrogen amount (kg/ha) [0,200]
irrigation water amount (l/m2) [0,50]

Table 1: Daily actions available in gym-DSSAT

Day After Planting (DAP) Quantity (kg N/ha)
40 27
45 35
80 54

Table 2: Expert fertilization policy

stochastic weather simulator (Richardson 1985; Soltani and
Hoogenboom 2003).The duration between the starting date
of the simulation and the planting date, which lasts about
one month, induces stochastic soil conditions at the time of
planting (e.g. soil nitrate, and soil water content), as a result
of the stochastic weather events.

The number of measurable attributes in a field is ex-
tremely large (e.g. Husson et al. 2021). Based on agronomic
knowledge, we selected a subset of DSSAT state variables
with the constraint that these variables are measurable or
can be estimated in real conditions. These observation vari-
ables are mixed, and take either continuous or discrete val-
ues. In DSSAT, the WGEN stochastic weather simulator is
implemented as a first-order Markov chain, but all other pro-
cesses are deterministic. Therefore, gym-DSSAT decision
problems are Markovian. Because the agent only accesses
a subset of all DSSAT internal variables, a gym-DSSAT
problem is a Partially Observable MDP (POMDP, Åström
1965), similar to the real problems faced by farmers. In con-
trast with many RL toy environments, the environment is
autonomous: it evolves by itself and not only because an ac-
tion has been performed by the agent. Indeed, if on a given
day a farmer does not fertilize/irrigate, her plot still evolves.
DSSAT simulates the dynamics at the plot level. Likewise,

the agent performs actions on the whole plot. Growing con-
ditions such as soil characteristics and other crop operations
such as soil tillage, cultivar choices are fixed. We define the
default return functions based on agronomic knowledge fol-
lowing the return shaping principle (Randløv and Alstrøm
1998; Ng, Harada, and Russell 1999).

By default, gym-DSSAT provides three RL problems:
1. A fertilization problem in which the agent can apply ev-

ery day a certain quantity of nitrogen (Table 1). Crops are
rainfed, and no irrigation is applied during the growing
season, except a single one before planting. We crafted
the default fertilization return function as:

r(t) = trnu(t, t+1)︸ ︷︷ ︸
plant nitrogen
uptake (kg/ha)

− 0.5︸︷︷︸
penalty
factor

× anfer(t)︸ ︷︷ ︸
fertilizer

quantity (kg/ha)

(2)

2. An irrigation problem in which the agent can provide
every day a certain amount of water to irrigate, as in-
dicated in Table 1. Independently of these irrigation ac-
tions, nitrogen fertilization occurs following the schedule
provided in Table 2.



Variable Definition
istage DSSAT maize growing stage (categorical)
vstage vegetative growth stage (number of leaves)
topwt above the ground crop biomass (kg/ha)
grnwt grain weight dry matter (kg/ha)
swfac index of plant water stress (unitless)
nstres index of plant nitrogen stress (unitless)
xlai leaf area index (m2 leaf/m2 soil)
dtt growing degree days (◦C/day)
dap days after planting (day)

cumsumfert cumulative nitrogen fertilization (kg N/ha)
rain rainfall for the current day (l/m2/day)
ep actual plant transpiration rate (l/m2/day)

Table 3: Default observation space for the fertilization task.

3. A mixed fertilization and irrigation problem which
combines both the aforementioned decision problems,
i.e. the agent can fertilize and/or irrigate every day.

Custom scenario definition. A user can easily modify the
observation space in the YAML configuration file. In the
same way, the definition of the return functions can be eas-
ily modified by the user by editing a standalone Python file.
Built-in DSSAT features can be directly leveraged, such as
environmental modifications with changes in atmospheric
CO2 concentration or meteorological features, to mimic the
effects of climate change.

Experimenting with gym-DSSAT
A use case: learning an efficient maize fertilization
We present an example of how to address the default fertil-
ization task. The source code of these experiments is avail-
able in gym-DSSAT GitLab page.

Methods. As each episode spans only one growing sea-
son, i.e. a finite number of time steps, we define the objective
function as the undiscounted sum of returns (Equation (1)).
As a common practice, we pragmatically approximate this
decision problem as an MDP, even though it is a POMDP.
Table 3 provides the observation space. We consider three
policies:
• The “null” policy that never fertilizes. As there always

is nitrogen in soil before cultivation (Morris et al. 2018),
without mineral fertilization, the reference experiment,
or control, is usually the null policy. Agronomists mea-
sure the effect of a nitrogen fertilization policy as a gain
compared to the null policy, in order to decouple the ef-
fect of nitrogen fertilization from the effect of already
available nitrogen in soil (Vanlauwe et al. 2011).

• An “expert” policy published in the original maize field
experiment (Hunt and Boote 1998) and defined in Ta-
ble 2. This expert policy consists of three deterministic
nitrogen fertilizer applications, which only depend on the
number of days after planting.

• A policy learned by the Proximal Policy Optimiza-
tion (PPO, Schulman et al. 2017) RL algorithm, as imple-
mented in Stable-Baselines3 1.4.0 (Hill et al.
2018). As our goal is to establish a simple baseline,
we use the default hyper-parameter values for PPO. We

trained PPO during 106 episodes. During training, the
performance of PPO is evaluated on a validation envi-
ronment every 103 episodes. We seed the validation en-
vironment with a different seed than for the training envi-
ronment. Consequently, the validation environment gen-
erates a different sequence of weather series compared to
the training environment. The model with the best vali-
dation performance is saved as the result of the training.

In order to compare fertilization policies, we measure
their performances by running them for 103 episodes on a
test environment. With regards to the training environment,
the test environment is the same except for the seed of the
pseudo-random number generator. In the performance anal-
ysis of policies, the evolution of returns rt provides informa-
tion about the learning process from an RL perspective, but
returns are not directly interpretable from an agronomic per-
spective. Performance analysis of crop management strate-
gies require multiple evaluation criteria (Doré et al. 2006;
Duru et al. 2015). To remedy this problem, we use a sub-
set of DSSAT internal state variables as performance indi-
cators (Table 4). Note that these variables are not neces-
sarily contained in the observation space of the fertilization
problem (Table 3) because we use them for another purpose
than algorithm training. Each of these performance crite-
ria are correlated with the other ones. For instance, increas-
ing the total fertilizer amount is likely to increase the grain
yield, but it is also likely to increase the pollution induced
by nitrate leaching. The agronomic nitrogen-use efficiency
(ANE, Vanlauwe et al. 2011) is a common indicator of fer-
tilization sustainability. For a policy π, let grnwtπ be the
dry matter grain yield of the policy π (kg/ha), grnwt0 be
the dry matter grain yield with no fertilization (kg/ha), and
cumsumfertπ be the total fertilizer quantity applied with
policy π (kg/ha), we have:

ANEπ(t) =
grnwtπ(t)− grnwt0(t)

cumsumfertπ(t)
(3)

ANE indicates the grain yield response with respect to the
null policy provided by each unit of nitrogen fertilizer. ANE
is a key metric of sustainable fertilization. Maximizing ANE
relates to the economic and environmental aspects, and leads
to an efficient use of fertilizer, which limits the risks of pol-
lution. Performance indicators listed in Table 4 show a com-
plex trade-off between conflicting objectives.

Results. Figure 1 illustrates the evolution of the objective
function J against the day of simulation. PPO outperforms
the two other policies. The performance obtained by PPO
learned policy is less variable than that of the expert policy.
Figure 2 provides a 2D histogram of fertilizer applications,
against the day of simulation. PPO nitrogen fertilizer appli-
cations are more frequent at the beginning of the growing
season and around day of simulation 60. This date corre-
sponds to the beginning of the floral initiation stage. Never-
theless, the variability of rates and application dates of PPO
policy shows that it does not depend solely on the number of
days after planting as the expert policy, but also depends on
other factors.

Table 5 provides statistics of the performance indicators
mentioned in Table 4. As expected, no policy is optimal for



Variable Definition Comment
grnwt grain yield (kg/ha) quantitative objective to be maximized
pcngrn massic fraction of nitrogen in grains qualitative objective to be maximized

cumsumfert total fertilization (kg/ha) cost to be minimized
– application number cost to be minimized
– nitrogen use efficiency (kg/kg) agronomic criteria to be maximized

cleach nitrate leaching (kg/ha) loss/pollution to be minimized

Table 4: Performance indicators for fertilization policies. ‘-’ means the variable is not provided by default but it can be derived.

Null Expert PPO
grain yield (kg/ha) 1141.1 (344.0) 3686.5 (1841.0) 3463.1 (1628.4)
massic nitrogen in grains (%) 1.1 (0.1) 1.7 (0.2) 1.5 (0.3)
total fertilization (kg/ha) 0 (0) 115.8 (5.2) 82.8 (15.2)
application number 0 (0) 3.0 (0.1) 5.7 (1.6)
nitrogen use efficiency (kg/kg) n.a. 22.0 (14.1) 28.3 (16.7)
nitrate leaching (kg/ha) 15.9 (7.7) 18.0 (12.0) 18.3 (11.6)

Table 5: Mean (st. dev.) of performances computed over 1000 episodes. Bold numbers indicate the best performing policy.
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Figure 1: Mean cumulated return of each of the 3 poli-
cies against the day of simulation. Shaded area displays the
[0.05, 0.95] quantile range for each policy.

all the performance criteria. PPO policy exhibites a good
performance trade-off between the expert and the null poli-
cies. Grain yield and nitrogen content in grains (a nutritional
criteria) are close to those of the expert policy. On average,
PPO policy consumes about 28% less nitrogen than the ex-
pert policy. Consistently, ANE for PPO is about 29% larger
than that of the expert policy. From a practical perspective,
a good fertilization policy consists of a limited number of
applications of the fertilizer as the expert policy suggests.
Indeed, each application costs in terms of fertilizer and its
application. The mean number of applications of PPO (∼6)
is larger than for the expert policy (3) but still remains man-
ageable.

Execution time. We performed all the experiments with
gym-DSSAT on a standard 8-core laptop. The mean run-
ning time to simulate one day in gym-DSSAT, i.e. taking a
single step in the environment, is 2.56±0.22 ms. Thus, each
interaction is fast and allows to consider a large number of
interactions for training the agent.

Reproducibility. We successfully reproduced the results
of the present study on the same hardware and software
layers. This means that both results of gym-DSSAT and
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Figure 2: 2D histogram of fertilizer applications (the darker
the more frequent).

Stable-Baselines3 PPO are reproducible on the same
platform. Nevertheless, as a more general reproducibility is-
sue, we cannot guarantee the cross-platform reproducibility
of the experiments that we presented. If we consider only
gym-DSSAT, we have successfully reproduced the outputs
of the environment across various Linux platforms.

Concluding remarks

We presented gym-DSSAT, a gym environment to train RL
agents for realistic crop management tasks. gym-DSSAT
provides the RL community with a state-of-the-art crop sim-
ulator that features original challenges. The preliminary re-
sults, which we present here, confirm that, in simulated con-
ditions, RL can discover interesting crop management poli-
cies. gym-DSSAT also allows to mimic world-wide grow-
ing conditions, using already widely available DSSAT sim-
ulation files. gym-DSSAT can be an important tool for ad-
dressing the ongoing challenges of sustainable crop inten-
sification through improved crop management, including
those in the Global South.
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