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Abstract

The use of photometric solids into both real time and photorealistic rendering allows de-
signers and computer artists to enhance easily the quality of their images. Lots of such data
are available from lighting societies since they allow these societies to easily present the lu-
minance distribution of their often complex ligthing systems. When accuracy is required the
amount of discretized luminance directions and the number of photometric solids that have to
be used increase considerably the memory requirements and reduce the algorithm efficiency.
In this paper we describe and compare two machine learning approaches used for approximat-
ing any photometric solid: an artificial neural network and ECON (Equi-Correlated Network
Algorithm). By applying these two approaches on a large set of real photometric distribution
data, we were able to show that one of them provides generally a better approximation of the
original distribution.
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1 Introduction
Computing realistic lighting effects for im-
age synthesis requires to model accurately the
light propagation and the interaction of light
with the object materials. Another important
feature is an accurate model of the source
light distribution since it determines all the

lighting simulation. This can be done by
modeling in depth the numerous parts of any
lighting system and then to use this model
in the lighting simulation. The main draw-
back of such an approach is that modeling is
often complex and simulation times increase
according to the details the source is modeled
with. this approach is obviously not really us-
able for any real-time rendering software.

One way to approximate the main features
of the light distribution of any lighting sys-
tem is to use a discretized representation of



the photometric distribution of this system:
measurements are performed for a set of di-
rections around the center of the lighting sys-
tem which is approximated as a point light
source. Assuming a large distance between
any illuminated point and the source, interpo-
lating between discrete photometric data can
then provide a useful approximation of the
source light distribution. This light distribu-
tion is known as a photometric solid (PS) (see
figure 1 for examples) and is generally stored
in a standardized representation known as the
IES file format [IES95].

Figure 1: A sketch of two photometric solids
built from data extracted from the Metalu-
men photometric data files library [Met].

When accuracy is required in a render-
ing software, a large number of measure-
ments have to be performed and the size
of the IES file increases considerably. Then
when large light sources are approximated
or for close to source illuminated points,
the point light source approximation becomes
false and results are far from being accurate.
A workaround is to split the source area into
small sub-sources, each one having its own PS
[Den02]. Obviously, this increases both mem-
ory requirements and computation times. Us-
ing a large number of accurate photometric
solids thus involves finding a way of reducing
their memory consumption and their compu-
tation time overhead. Up to our knowledge,
compressing PS has not yet been much stud-
ied. Lots of works have been done in some
related problems such as compressing Bidi-
rectionnal Reflectance Distribution functions
(BRDF) [SAWG91][CPB06][NP00], and for
approximating 3D shapes out of large point

clouds [WSC06]. In the latter, the goal is not
the same as ours since the purpose is to al-
low the shape to be rendered through its new
representation using potentially cost effective
algorithms. For the former, Deniel [Den02]
showed that the classical approaches for its
resolution are not well-suited for photometric
solids compression. He then proposed a hier-
archical adaptive compression model that ef-
ficiently compress the PS and provides a fast
access to the directionnal luminance data. In
previous works, we studied the use of machine
learning methods [DRP09][LPDR09] for PS
compression. The goal was to use these meth-
ods in order to learn the “shape” of any PS
and then to be able to aproximate it with
very few basis function. The outcome of this
work was to compress efficiently the PS and to
be able to efficiently generate the luminance
emitted from the source along any direction.
In this paper, we are interested in comparing
our two previous approaches on a large data
set of PS. This allows us to provide a better
analysis of their advantages and drawbacks.
In the next section, we provide a brief

overview of the machine learning techniques
that are suitable to deal with the problem
at hand, and describe more precisely the two
methods we compare. Our methodology is
detailed in section 3, and our results are pre-
sented in section 4.

2 Machine learning ap-
proach

The general idea is to use supervised learn-
ing to produce a regression model. The re-
gression problem may be summarized as fol-
lows: we have a set of N examples (xi, yi)
with i ∈ {1, . . . , N}, xi ∈ D ⊂ RP , yi ∈ R;
yi is assumed to be a noisy realization of an
unknown function y, that is: yi ≡ y(xi) + ε
where ε denotes some noise. The goal is to
learn, or estimate, a function ŷ that approx-
imates as well as possible y, and so that ŷ
may be further used to predict the value as-
sociated to any data x ∈ D . ŷ may also be
considered as a model of the data, a model



that is learned in order that the function y
may subsequently be estimated for any data
x in the domain. The model is obtained
by induction, that is, from data, one derives
a general rule. The regression problem has
been studied for at least two centuries, and
tens of thousands publications, and hundreds
techniques and algorithms are known. The
study of this problem is still a very active re-
search area, with very significant challenges
still pending. There has been very significant
advances since the 1980’s, with the develop-
ment of multi-layer perceptrons, and more re-
cently, the development of statistical learning
which is deeply rooted in statistics, the the-
ory of function approximation, and functional
analysis.

2.1 Artificial neural networks
In this work, to learn a ŷ, we use a multi-layer
perceptron (MLP), and we restrict ourselves
to 1 hidden layer perceptrons [Hay08]. In this
case, ŷ has the form:

ŷ(x.) = So(
k=K∑
k=1

wkSh(aj,kx.,j)) (1)

where So (resp. Sh) is the so-called acti-
vation function of the output (resp. hidden)
unit, the wk and aj,k are real weights, x.,j de-
notes the jth component of the data x., and
K is the number of hidden units. Here, both
So, and Sh are sigmoid functions of the form
So(x) ≡ 1

(1+e−x) . Training an MLP means
finding the “best” value for the K weights wk
and the P ×K weights aj,k. Please note that
K is fixed a priori.
To learn these weights, we initially set them

to some value (arbitrary or not), so that ŷ
may be computed for any data x ∈ D . Basi-
cally, iteratively, one computes ŷ(xi) for some
example xi, and modifies the value of the
weights according to the discrepancy between
the expected value yi, and the predicted value
ŷ(xi). Various methods exist to achieve this,
the most well-known being the backpropaga-
tion of error, which is a simple gradient de-
scent algorithm.

2.2 ECON
Introduced in [LPDR09], the Equi-Correlated
Network Algorithm (ECON for short) is con-
sidering models of the form:

ŷ(x) ≡ w0 +
k=K∑
k=1

wkφk(x). (2)

For each k, φk : D → R is a feature func-
tion that maps a data to a real value; it may
be any such function. Here again, the w0 and
the set of wk are real weights. There are two
points that come in sharp contrast with the
MLP approach introduced above:

• K is not fixed: it is learned by ECON,

• generally, each feature function φk has
some parameters; these parameters are
also learned by ECON. For the sake
of illustration, one may consider that
φk is drawn from the family of mul-
tivariate Gaussian functions φk(x) =
e−(x−µk)TCk(x−µk), and the parameters for
such a function are the center µk ∈ D ,
and the covariance matrix Ck ∈ RP×P .

These two points add a great flexibility to
ECON with regards to previous algorithms.
Thus, ECON learns a lot of parameters:

the very number of parameters itself (K),
K + 1 weights, and the parameters of each
feature function. As such this is an ill-posed
problem (in Hadamard’s sense). To solve it,
we adopt a principled way based on a parsi-
monious approach, which tends to make K as
small as possible; particularly, we look for the
optimal parameters for the smallest value of
K. Probably quite surprisingly, there is an
exact algorithm to obtain the solution of this
problem, and this algorithm is very efficient,
and effective. To this end, ECON is a gener-
alization of the LARS algorithm introduced
in [OPT00], and named by [EHJT04]. The
idea is to iteratively compute the optimal ŷ
for each value of K, starting with K = 0,
and until some stopping criterion is met. For
each value of K, the weights are computed
exactly, and the feature function parameters



are obtained either analytically if the form of
the feature function has such an analytical
solution, or via numerical optimization in the
general case.

2.3 ECON vs. MLP
MLP and ECON both learn an approxima-
tion of a real function given a set of samples of
this function. The result is a weighted sum of
feature functions. But some differences arise
that should provide interesting advantages to
ECON:

• a MLP has a fixed number of units
whereas ECON learns the number of
units that should be used;

• all the parameters of a MLP unit are
the same for all units whereas ECON se-
lects the parameters of each single fea-
ture function;

• ECON seeks a parsimonious representa-
tion, which means that it compresses the
information.

In the next sections of the paper, we thus
investigate the use of ECON for photometric
solids approximation.

3 Methodology

3.1 The learning stage
In order to compare the results provided by
the two learning methods (MLP and ECON),
we apply a methodology that is sketched in
figure 2. Each IES file used in our experi-
ments is first of all submitted to both learning
methods.
Both methods use a subset of the input

data: we use the rest of the data to con-
trol the accuracy of the model. This way, we
avoid overfitting, that is, the model is too fit
to training data, and no longer good to pre-
dict accurately other data in the domain. For
practical purposes 80% of the input data are
used for learning and 20% for evaluating the
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Figure 2: The methodology of the approach
used in this paper to compare MLP and
ECON.

resulting approximator. This split is made at
random.
After each learning algorithm has been run,

its output (the model it induced) is written
into a new file according to a specific file for-
mat. MLP outputs the weights, while ECON
outputs the weights and the function param-
eters. According to the input data, the learn-
ing computation time can range from a few
seconds to a few minutes. Note however that
learning is performed only once and that once
learned, the use of the model is very fast.

3.2 Using the resulting approx-
imators

Once learning has been performed, MLP and
ECON provide an approximator of a photo-
metric solid. These approximators can then
be inserted into any global illumination or re-
altime rendering method using a simple inter-
face where an emission direction is provided
to the approximator and a luminance value is
returned.
The main use of the output of the approxi-

mators in this paper is the analysis of the dis-
crepancy between the IES data and the ap-
proximated values. These outputs are thus
used either in for error analysis (see section
3.3), or in a 3D visualization tool that can
help us in locating the directions where large
errors occur.



3.3 Computing the error

In any rendering method, evaluating the ac-
curacy of the new representation during its
use requires the definition of a relevant er-
ror criterion. From a rigorous point of view,
we should be able to compare the luminance
emitted by the photometric solid along any
direction to a measure of the luminance re-
ceived along the same direction for the cor-
responding real lighting system. But in ad-
dition to the complexity of such measures, it
is obviously difficult to access the numerous
lighting systems for which photometric solids
have been analyzed. We thus have to deal
with this problem only with the IES available
samples. One way to measure the error could
be to compute a visual distance between two
images rendered respectively with the original
IES data and the new representation. But
two problems arise with such an approach.
The first one is concerned with the fact that
images are generally computed with a classi-
cal camera model that allows only a part of
the scene to be rendered. Some kind of fish
eye camera could be used but it requires deal-
ing with distorted images. The second prob-
lem is concerned with the choice of the inter-
polation method that has to be used with the
IES data, since samples represent a small sub-
set of the emission directions set. Because in-
terpolation is used, it can introduce artefacts
into the rendered images that would not be
present in real images (see for example fig-
ure 3). It is thus difficult to get a relevant
measure of the error in this case.
Another way to measure the error is to

consider the numerical distance between the
available data and the corresponding values
provided by the new approximation models.
Being unable to make a global compari-

son of two images, we have to use a local
comparison based on a set of sampled direc-
tions, for which we compare the luminance
obtained from the IES file, and from the MLP,
or ECON. From this local error, we obtain
a global error measure using the normalized
root mean square error, and the normalized
mean absolute error.

Figure 3: Global illumination with IES data
using linear interpolation (left) and with an
MLP model (right). Lighting discontinuities
due do the linear interpolation are clearly vis-
ible onto the back wall while they do not exist
when using the MLP model.

We used the normalized root mean squared
error (RMSE) which is given by equation 3,
where n is the number of directions used for
the error computation, y the measured value
of luminance along any direction and ŷ the
value provided by the model along the same
direction. Because IES file provides only dis-
crete values, a linear interpolation is com-
puted to find y.

RMSE =
√√√√ 1
n
.
n∑
i=1

(y − ŷ)2 (3)

Normalization is performed using equa-
tion (4), and provides the normalized root
mean squared error (NRMSE). max(y) (resp.
min(y)) is the maximum value (resp. mini-
mum value) of y over the n sampled direc-
tions.

NRMSE = RMSE

max(y)−min(y) (4)

Mean square error has the disadvantage to
over-represent the large error terms in the re-
sult: since differences are squared, the con-
tribution of large error is exaggerated. That
is why a Mean Absolute Error (MAE) and
a Normalised Mean Absolute Error (NMAE)
are computed (equations (5) and (6)).

MAE = 1
n
.|ŷ − y| (5)



NMAE = MAE

max(y)−min(y) (6)

Another way to normalize the error taht
has been suggested in [Den02] is to normalise
the error with respect to the statistical vari-
ance of y. We thus can define an error func-
tion according to equation (8).

ErrFunct =
√√√√MSE

σ2
y

(7)

=

√√√√√√√
∑

(ŷ−y)2

n∑ y2

n
−
(∑

y

n

)2 (8)

4 Results

4.1 Experimentation data
To overcome the unavailability of a formal
proof that one method outperforms the other,
we compare MLP and ECON on a large set
of IES data files. For this purpose we down-
load the photometric data files libraries of two
lighting societies: Ledalite [Led] (613 data
files) and Metalumen [Met] (1310 data files).
This provides us with 1.923 IES files that have
all been used during our experimentations 1.
Regarding MLP and ECON, we have im-

plemented them both in C. The MLP used
here is a 1 hidden layer perceptron, with 10
units in the hidden layer (that is K = 10 in
eq. (1)). ECON uses multivariate Gaussian
feature functions with a diagonal covariance
matrix.
Data are provided both to ECON and to

an MLP. The median learning time is 28s for
ECON and 16s for the MLP2. Let us recall
that learning is performed only once during
the IES data compression.

1Statistical analysis and graphical representation
are made with the R [R D09].

2Learning is performed on an Intel R©CoreTM2 Duo
CPU T8300@2.40GHz running Ubuntu 9.10; pro-
grams are build using GNU g++ 4.4.1 compiler with
-03 optimization flags.

4.2 Error

Table 1 presents statistical results for the
two photometric data libraries that have been
used during our experimentations. It high-
lights that ECON provides generally better
results that the MLP approach for the two
libraries. With ECON the median NRMSE
is distinctly smaller: 0.06615 for Ledalite
and 0.07119 for Metalumen (as compared to
0.1537 and 0.1718 for the MLP).
In figure 4, for each photometric database

and for each approximator, we report the dis-
tribution of the number of IES file concerned
with some specific NRMSE error. The dia-
grams show clearly that most of the approxi-
mators provided by ECON are more accurate
than those provided by the MLP.
Even if the NRMSE is relatively low in the

two cases, the luminance distribution can be
visually different. This is highlighted in the
images of figure 5 where these distributions
are visualized on a wall: the MLP approxima-
tor provides clearly a less accurate distribu-
tion especially in the grazing directions (ad-
ditionnal comparisons are given in figure 8 for
complex photometric solids and in figure 7).

Figure 5: We illustrate the visual impact of
using the different methods on the Ledalite
9414D1H254 IES file. The 3 subfigures are
the distribution of the luminance obtained
by linear interpolation of the original IES
file (center), the one obtained from the MPL
approximator (left) and the one obtained
from the ECON approximation (right). RN-
MSE(MLP) = 0.204, RNMSE(ECON) =
0.0369 for ECON.



Ledalite Metalumen
ECON MLP ECON MLP

error mesure mean median mean median mean median mean median
RMSE 0.1357 0.1065 0.2283 0.2245 0.1631 0.09554 0.2234 0.2207

NRMSE 0.1164 0.06614 0.1791 0.1537 0.1639 0.07119 0.2073 0.1718
MAE 0.09481 0.07387 0.1786 0.1807 0.1181 0.06511 0.1732 0.1733

NMAE 0.08107 0.04472 0.1388 0.1217 0.1167 0.05020 0.1596 0.1317
ErrFunct 0.1540 0.1172 0.1540 0.1172 0.2491 0.2253 0.1736 0.1056

Table 1: Statistical results for the approximators provided by ECON and a Multi-layer Perceptron
applied on the Ledalite and Metalumen photometric data libraries. For each, mean and median
are shown. The median is less sensitive to abnormal values than the mean.
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Figure 4: Histograms of the NRMSE of the approximations provided by ECON and the MLP,
measured on the set of 1923 IES files (Ledalite database on the left, Metalumen on the right).
The shape of these distributions does not really depend on the library, but the dependence on
the algorithm is striking.



4.3 Compression
Another important way of evaluating the ap-
proximators is to measure the size of the data
they generate as compared to the original
data size. For this purpose we compute a
compression ratio Cr that is defined as the ra-
tio between the number nIA of floating point
values required for storing the data of the ap-
proximator and nIES, the one of the corre-
sponding IES file. Those values represent the
weights for the MLP, the weights and feature
parameters for ECON, and the angle and lu-
minance values for the IES files.

Cr = nIA
nIES

According to this criterion, the MLP has
generally better compression performances
than ECON. The Cr median value for MLP is
0.0895 for the Ledalite library, and 0.1752 for
the Metalumen library, whereas these values
are respectively 0.2249 and 0.4342 for ECON.
Here again, we can note that the dispersion of
results is much more important with ECON
(see figure 6). Furthermore we found that the
compression ratio is greater than 1 for a few
IES files using ECON. This is really surpris-
ing and must be investigated in future works.

5 Conclusion
In this paper we studied and compared the
use of two machine learning approaches for
photometric solids compression. By using a
large number of photometric data from two
lighting societies we were able to show that
this kind of approach could be of great value
for photometric approximation. In most cases
the ECON algorithm appears to give the best
approximator but in some few cases the MPL
approach surpass its results. Reciprocally the
compression ratio is generally better when us-
ing a MLP. These two features should be in-
vestigated deeply in a future work. Nonethe-
less one way to take advantage of the two ap-
proaches could be to use them simultaneously
inside a multi-modeling approach: both ap-
proaches could be run onto the input file and

their results would be compared in order to
choose which one should be finally used ac-
cording to a given criterion (error, compress-
sion rate, . . . ). This kind of approach should
then be extended by studying the use of other
feature functions in ECON. Finally, we will
investigate the few IES files where either a
large error, or a bad compression rate, has
been found in order to be able to generalize
our approach.
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Rendering with isotropic
lights
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Figure 7: Example of rendering using MLP or ECON as approximator. The same scene is used
to compare with a linear interpolation of IES file and with isotropic light sources.
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3D view Rendering with
IES

Rendering with
MLP

Rendering with
ECON

Ledalite 2526T1WD NRMSE = 0.2225 NRMSE = 0.1215

Ledalite 2526T1WN NRMSE = 0.2806 NRMSE = 0.2365

Ledalite 2808H2EN NRMSE = 0.2192 NRMSE = 0.1008

Ledalite 8016H2PD NRMSE = 0.2123 NRMSE = 0.0811

Ledalite 8816H1RG NRMSE = 0.2690 NRMSE = 0.1627

Metalumen
SD4BUML-6 NRME = 0.2263 NRMSE = 0.07418

Figure 8: Examples of rendering using MLP or ECON as approximator.


