
A STATISTICAL APPROACH TOAPPROXIMATE

DYNAMIC PROGRAMMING
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SAMPLING BASED FITTED VALUE ITERATION – SINGLE

SAMPLE

1: function SFVI-SINGLE(N, M, K , µ,F , P, S)
2: for i = 1 to N do
3: Draw Xi ∼ µ, Y Xi ,a

j ∼ P(·|Xi , a), RXi ,a
j ∼ S(·|Xi , a),

(j = 1, . . . , M, a ∈ A)
4: end for
5: V ← 0 // approximate value function
6: for k = 1 to K do
7: V̂i ← maxa∈A

{
1
M

∑M
j=1

(
RXi ,a

j + γV (Y Xi ,a
j )

)}
8: V ← argminf∈F

∑N
i=1(f (Xi)− V̂i)

2 // fitting
9: end for

10: return V

[Szepesvári and Munos, 2005]



SFVI IS EFFICIENT

THEOREM

MDP: smooth, stochasticity assumption satisfied.

Fix F , µ, ρ.

Let πK be greedy w.r.t. V =SFVI0 (N, M, K , µ,F , P, S).

Let ε = d(TF ,F)

With N, M, K are polynomial in the relevant quantities..

.. with probability at least 1− δ,

‖V ∗ − V πK ‖p,ρ ≤ C(µ)1/p 4 ε

(1− γ)2
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BELLMAN ERROR OF FUNCTION SETS

Bound is in terms of the distance of the sets TF , F :

d(TF ,F)
def
= sup

V∈F
inf
f∈F
‖TV − f‖p,µ

“Bellman error on F”

F should be large to make d(TF ,F) small!

if MDP is “smooth”, TV is smooth for any! bounded V

smooth functions can be well approximated

⇒ assume MDP is smooth
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METRIC ENTROPY

Bound depends on logN (F , N):

metric entropy of F
(Metric-entropy measures ‘capacity’, similar to
VC-dimension)

Metric-entropy increases with the ‘size’ of F !

Previous slide said F should be big!

How does this work out??
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POLYNOMIAL SAMPLE COMPLEXITY

Linear models:
F = {wT φ | ‖w‖ ≤ A}

[Zhang, 2002]: logN (F , N) ∼ log(N)

independent of dim(φ)⇒ many ‘features’ do not harm!

COROLLARY

For smooth MDPs sample complexity is polynomial

CAVEAT

Smoothness is critical.
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FIXED SAMPLE-BASED BELLMAN RESIDUAL CRITERION

Given X0, A0, R0, X1, A1, R1, . . . , XN :

LN,π(Q, h) =

1
N

N∑
t=1

wt

{
(Rt + γQ(Xt+1, π(Xt+1))−Q(Xt , At))

2

−(Rt + γQ(Xt+1, π(Xt+1))− h(Xt , At))
2
}

wt = 1/µ(At |Xt)



ALGORITHM

ALGORITHM

1 Choose π0, i := 0
2 While (i ≤ K ) do:
3 Let Qi+1 = argminQ∈FA suph∈FA LN,πi

(Q, h)

4 Let πi+1(x) = argmaxa∈AQi+1(x , a)

5 i := i + 1



MAIN RESULT

THEOREM

[Antos et al., 2006] Under a number of assumptions.., for x > 0,
with probability at least (1− K exp(−x)),

‖Q∗ −QπK ‖2,ρ ≤
2γ

(1− γ)2 C1/2
ρ,ν

(
Ẽ(F) + E(F) + S1/2

N,x

)
+ (2γK )1/2Rmax,

SN,x = c2

(
(V

2 + 1) ln(N) + ln(c1) + 1
1+κ ln(

bc2
2

4 ) + x
) 1+κ

2κ

(b1/κN)1/2



APPROXIMATION ERRORS

‖Q∗ −QπK ‖2,ρ ≤
2γ

(1− γ)2 C1/2
ρ,ν

(
Ẽ(F) + E(F) + S1/2

N,x

)
+ (2γK )1/2Rmax

(TQf )(x , a) = r(x , a) + γ

∫
f (y , argmaxaQ(y , a))P(dy |x , a)

Ẽ(F): fixed-point approximation error of F

Ẽ(F) = sup
Q∈FA

inf
f∈FA

‖f − TQf‖2,ν

E(F): Bellman-residual of F

E(F) = sup
f ,Q∈FA

inf
h∈FA

‖h − TQf‖2,ν

ν: stationary distribution over the states, underlying the
behavior policy



DISTRIBUTION DISCREPANCY CONSTANT

‖Q∗ −QπK ‖2,ρ ≤
2γ

(1− γ)2 C1/2
ρ,ν

(
Ẽ(F) + E(F) + S1/2

N,x

)
+ (2γK )1/2Rmax

Cρ,ν = (1− γ)2
∑
m≥1

mγm−1c(m)

c(m) = sup
π1,...,πm

∥∥∥∥d(ρPπ1Pπ2 . . . Pπm)

dν

∥∥∥∥
∞

NOTE

Let Cν = supx ,a ‖dP(·|x , a)/dν‖∞.
Then Cρ,ν ≤ Cν .



ESTIMATION ERROR

Bound:

‖Q∗ −QπK ‖2,ρ ≤
2γ

(1− γ)2 C1/2
ρ,ν

(
Ẽ(F) + E(F) + S1/2

N,x

)
+ (2γK )1/2Rmax

SN,x = c2

(
(V

2 + 1) ln(N) + ln(c1) + 1
1+κ ln(

bc2
2

4 ) + x
) 1+κ

2κ

(b1/κN)1/2



ESTIMATION ERROR

SN,x = c2

(
(V

2 + 1) ln(N) + ln(c1) + 1
1+κ ln(

bc2
2

4 ) + x
) 1+κ

2κ

(b1/κN)1/2

{Xt}t is exponentially β-mixing with parameters (b, κ):

βm ≤ constexp(−bmκ)

c2 = O(R2
max/µ0|A|) ∼ R2

max,

µ0 = mina infx µ(a|x), µ is the behavior policy

ln(c1) = O(|A|2VF× log |A|+ |A|VF+ + V ln(c2))

V – effective dimension:

V = 3|A|VF+ + |A|2VF×



VC-CROSSING DIMENSION

t-th action-value function:

Qt+1 = argmin
Q∈FA

sup
h∈FA

LN,πt (Q, h)

Note: πt depends on the data⇒ random
Fitting criterion:

LN,πt (Q, h) =

1
N

N∑
t=1

wt

{
(Rt + γQ(Xt+1, πt(Xt+1))−Q(Xt , At))

2

−(Rt + γQ(Xt+1, πt(Xt+1))− h(Xt , At))
2
}



VC-CROSSING DIMENSION

Fitting criterion:

LN,πt (Q, h) =

1
N

N∑
t=1

wt

{
(Rt + γQ(Xt+1, πt(Xt+1))−Q(Xt , At))

2

−(Rt + γQ(Xt+1, πt(Xt+1))− h(Xt , At))
2
}

F∨ = {f | f (x) = Q(x , argmaxa∈AQ′(x , a)), Q, Q′ ∈ FA}

= {f | f (x) =
∑
a∈A

ga(x)I{π(x)=a}, ga ∈ F , π ∈ ΠF}

ΠF = {π |π(x) = argmaxa∈AQ(x , a), Q ∈ FA}.

[Nobel, 1996]: regression trees with data dependent partitions
⇒ VF×



VC-CROSSING DIMENSION

C2 = {{x ∈ X : f1(x) ≥ f2(x)} : f1, f2 ∈ F}

VF× = VC2

Notes:
1 VF+ ≤ VF×
2 But: there exists F such that

F ⊂ {f |f is monotoneous, bounded},
F is VC-major (system of level-sets have finite VC-dimension),
VF+ < +∞,

and VF× =∞



CONCLUSIONS

Connecting regression and reinforcement learning

Continuous state space

Single trajectory, exponential beta-mixing

Fitted policy iteration with

..fixed Bellman-residual criterion

Finite-time performance bound

(Approximation error) + (estimation error)

(Bound holds for sup-norm)



FUTURE WORK

Model selection, adaptivity (structural risk-minimization,
penalties)

Function set adapted to the problem (d(TF ,F)→ min)

Analysis/comparison of/with other algorithms (LSTD, AAVI,
FQI)

Continuous action space??

Algebraic mixing

On-line learning

Inverse problems: Pf = r , f =?
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DEFINITION OF ‖·‖2,ν

‖f‖22,ν = 1
|A|

∑
a∈A

∫
|f (x , a)|2dν(x)



β-MIXING

DEFINITION

Let {Zt}t=1,2,... be a stochastic process. Denote by Z 1:n the
collection (Z1, . . . , Zn), where we allow n =∞. Let σ(Z i:j)
denote the sigma-algebra generated by Z i:j (i ≤ j). The m-th
β-mixing coefficient of {Zt}, βm, is defined by

βm = sup
t≥1

E

[
sup

B∈σ(Z t+m:∞)

|P(B|Z 1:t)− P(B)|

]
.

A stochastic process is said to be β-mixing if βm → 0 as
m→∞.



EXTENSION OFNOBEL’ S (1996)LEMMA

Π: a family of partitions of X , m(Π): Cell-count of Π, G set of
bounded (|g| ≤ K ), real-valued functions

G ◦ Π =

f =
∑
Aj∈π

gjI{Aj} : π = {Aj} ∈ Π, gj ∈ G

 .

φN(·): ∀ε > 0, the empirical ε-covering numbers of G on all
subsets of the multiset [x1, . . . , xN ] are majorized by φN(ε).
Let x1:N ∈ XN , µN(A) = 1

N

∑N
i=1 I{xi∈A}

Let

d(π, π′) = dx1:N (π, π′) = µN(π4 π′), π = {Aj}, π′ = {A′j} ∈ Π,

where

π4 π′ = {x ∈ X : ∃j 6= j ′; x ∈ Aj ∩ A′j ′} =

m(Π)⋃
j=1

Aj 4 A′j ,



EXTENSION OFNOBEL’ S (1996)LEMMA II.

LEMMA

Assume that m(Π) <∞. Then, for any ε > 0, α ∈ (0, 1)

N1(ε,G ◦ Π, x1:N) ≤ N
( αε

2K
,Π, dx1:N

)
φN((1− α)ε)m(Π).



THE COVERING NUMBERS FOR THE COMPOSITE

ACTION-VALUE FUNCTION SPACE

LEMMA

Let F ⊂ RX , |f | ≤ K , x1:N ∈ XN , φN as before.

G1
2 = {I{f1(x)≥f2(x)} | f1, f2 ∈ F}.

Then ∀ε > 0, α ∈ (0, 1),

N (ε,FL×FL, lx1:N ) ≤ N1

(
αε

L(L− 1)K
,G1

2 , x1:N
)L(L−1)

φN((1−α)ε)L,

where

lx1:N ((f , Q′), (g, Q̃′)) =
1
N

N∑
t=1

|f (xt , π̂(xt ; Q′))− g(xt , π̂(xt ; Q̃′))|.
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