A STATISTICAL APPROACH TOAPPROXIMATE
DYNAMIC PROGRAMMING

Rémi Munos® Csaba Szepesvari?

1Centre de Mathématiques Appliquées
Ecole Polytechnique
91128 Palaiseau Cedex, France

2Computer and Automation Research Inst.
of the Hungarian Academy of Sciences
Kende u. 13-17, Budapest 1111, Hungary

ICML 2006, KRL Workshop



OUTLINE

@ SAMPLING-BASED APPROXIMATE VALUE ITERATION



OUTLINE

@ SAMPLING-BASED APPROXIMATE VALUE ITERATION

9 SINGLE TRAJECTORYBELLMAN RESIDUAL
MINIMIZATION



OUTLINE

@ SAMPLING-BASED APPROXIMATE VALUE ITERATION

9 SINGLE TRAJECTORYBELLMAN RESIDUAL
MINIMIZATION

© MAIN RESULT



OUTLINE

@ SAMPLING-BASED APPROXIMATE VALUE ITERATION

9 SINGLE TRAJECTORYBELLMAN RESIDUAL
MINIMIZATION

© MAIN RESULT

@ ConcLusions



OUTLINE

@ SAMPLING-BASED APPROXIMATE VALUE ITERATION

9 SINGLE TRAJECTORYBELLMAN RESIDUAL
MINIMIZATION

© MAIN RESULT
@ ConcLusions

© BIBLIOGRAPHY



SAMPLING BASED FITTED VALUE ITERATION — SINGLE
SAMPLE

1: function SFVI-SINGLE(N,M K, u, F,P,S)

2. fori=1to N do

3 Draw X; ~ p, Y% ~ P([X;, @), RO ~ S(-|X;, a),
(G=1,....,M,ac A

4: end for

5. V « 0 // approximate value function

6: for k =1to K do

7. Vi — maxaca {M T ( R —|—7V(iji’a))}

8V —argmincy SN (F(X;) — Vi)? /f fitting

9: end for

10: return V

[Szepesvari and Munos, 2005]
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THEOREM
e MDP: smooth, stochasticity assumption satisfied.
e Fix F, u, p.
o Let mx be greedy w.r.t. V =SFVIO (N,M, K, u, F,P,S).
o Lete =d(TF,F)
e With N, M, K are polynomial in the relevant quantities..
e .. with probability at least 1 — 6,

4 ¢
(1-7)?

IV =V, , < Cu)*/P



BELLMAN ERROR OF FUNCTION SETS

@ Bound is in terms of the distance of the sets T F, F:

def g
d(T = flTV —f
(TF,F) 3ggflgf\l o,



BELLMAN ERROR OF FUNCTION SETS

@ Bound is in terms of the distance of the sets T F, F:

def g
d(T = flTV —f
(TF,F) 3ggflgf\l o,

e “Bellman error on F”



BELLMAN ERROR OF FUNCTION SETS

@ Bound is in terms of the distance of the sets T F, F:

def q
d(TF,F) = sup inf [TV —f
(T 7,7) = sup inf [TV ~f]l,
e “Bellman error on F”

e F should be large to make d(T F,F) small!



BELLMAN ERROR OF FUNCTION SETS

@ Bound is in terms of the distance of the sets T F, F:

def :
d(T = fITV —f
(TF,F) 3ggflgf\l o,
e “Bellman error on F”
e F should be large to make d(T F,F) small!

e if MDP is “smooth”, TV is smooth for any! bounded V



BELLMAN ERROR OF FUNCTION SETS

Bound is in terms of the distance of the sets T F, F:

def .
d(T = sup inf [|[TV —f
(TF,F) 3egf€f\| o,
“Bellman error on F”
F should be large to make d (T F, F) small!
if MDP is “smooth”, TV is smooth for any! bounded V

smooth functions can be well approximated



BELLMAN ERROR OF FUNCTION SETS

Bound is in terms of the distance of the sets T F, F:

def .
d(T = sup inf [|[TV —f
(TF,F) 3egf€f\| o,
“Bellman error on F”
F should be large to make d (T F, F) small!
if MDP is “smooth”, TV is smooth for any! bounded V

smooth functions can be well approximated

= assume MDP is smooth
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METRIC ENTROPY

e Bound depends on log NV/(F,N):
metric entropy of F

(Metric-entropy measures ‘capacity’, similar to
VC-dimension)

e Metric-entropy increases with the ‘size’ of F!
e Previous slide said F should be big!
e How does this work out??
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POLYNOMIAL SAMPLE COMPLEXITY

Linear models:
F={wg|w|] <A}

e [Zhang, 2002]: log N (F,N) ~ log(N)
e independent of dim(¢) = many ‘features’ do not harm!

COROLLARY
For smooth MDPs sample complexity is polynomial

CAVEAT
Smoothness is critical.



FIXED SAMPLE-BASED BELLMAN RESIDUAL CRITERION

Given Xg, Ao, Ro, X1,A1, R, ..., XN:
LNJT(Q? h) =

N
% Zwt{(Rt +7Q(Xer1, m(Xe41)) — Q(Xe, A

~(Re +7Q (%11, m(Xe41)) — (Xe, A))? |



ALGORITHM

ALGORITHM
@ Choose 7, i :=0
@ While (i <K) do:
Q Let Qi1 = argminyc za SUPpera Ly 7 (Q,h)
Q@ Letmiyi(x)=argmax. 4Qiri1(x,a)
(5] i=i+1



MAIN RESULT

THEOREM

[Antos et al., 2006] Under a number of assumptions.., for x > 0,
with probability at least (1 — K exp(—x)),

SN,x

Q" — Q™

2,p S

2 -
TG (B +E@) +5F) + (299 R

1+k

(3 +1)In(N) + In(ea) + 2 In(%Z) + x)
(b2/sN)1/2

C2



APPROXIMATION ERRORS

* T 2 ~
Q" = QI < =5y CH2 (E(F) +E(F) +SY3) + (20/) "R

(Tof)(x,a) =r(x,a) +'y/f(y,argmagQ(y,a))P(dy|x,a)

E (F): fixed-point approximation error of F

E(F) = sup |nf If — Tofll,,
QeFAfeFA ’

e E(F): Bellman-residual of F

E(F)= su inf [|h — Tof
(F) =, sup  inf, I =Tofll,

e v: stationary distribution over the states, underlying the
behavior policy



DISTRIBUTION DISCREPANCY CONSTANT

* @ 2 ~
Q" = Ql,, < =y CHE (B +E(F) + ) + (20%)* R

Cop = (1—7)? Z my™~1c(m)

m>1
d(pP™P™2. . P™)

o0

NOTE

LetC, = SUPy 4 HdP(~‘X,a)/d1/HOO_
ThenC,, <C,.



ESTIMATION ERROR

Bound:

SN,X

Q" —

Q™ |5, <

2 ~
(1- fy)chl/f (E(F) +E@) +S{2) + (29%)?Rumax

1tk
2K

<(% +1)In(N) + In(c1) + 15 In(“2 ) v X)
(b1/xN)1/2

C2



ESTIMATION ERROR

1tk
2K

Y 1 1)In(N) + In(cy) + 2 In(%2) + x
((2 4 N7
Snx = G2 (b1/"N)1/2

o {Xt}t is exponentially 5-mixing with parameters (b, x):
Bm < constexp(—bm®)

® C2 = O(Rr%ax/MOLAD ~ Rr%ax’

o = Ming infy u(alx), p is the behavior policy
o In(c1) = O(JAI2V£x log |A| + |AVE+ + V In(cy))
e V — effective dimension:

V = 3|AVE+ + APV rx



VC-CROSSING DIMENSION

t-th action-value function:

Qt+1 = argminsup Ly . (Q,h)
QcFA heFA

Note: 7; depends on the data = random
Fitting criterion:

LN,m(Qv h) =
N

> wie{ (Rt +7Q(%us1,m(%142)) — QX A))?

t=1

5
N

—(Re +7Q(Xes1,m(Xe41)) — (X, A))?



VC-CROSSING DIMENSION
Fitting criterion:
LN,’/I"[(Q7h) =
1 N
N Zwt{(Rt + YQ(Xer1, Tt (Xe41)) — Q(Xt, Ar))?

t=1
(R +7Q(Xer1, m(Xe1)) — (X, A}

Fv = {f|f(x) = Q(x,argmax. ,Q'(x,a)), Q,Q" € FA}

= {f[f(x) = ga(X){n(x)=a} Ga € F, 7 € Mz}
acA

NrF = {r|m(x)=argmax.,Q(x,a),Q € F4}.

[Nobel, 1996]: regression trees with data dependent partitions
= V]:><



VC-CROSSING DIMENSION

Cz = {{X eX: fl(X) > fz(X)} : fl,fz € f}

V]:>< — ch

Notes:
O Vi <Vgx
@ But: there exists F such that

e F c {f|f is monotoneous, boundgd
o Fis VC—major (system of level-sets have finite VC-dimension),
o V_7.-+ < +00,

and V]:>< =0



CONCLUSIONS

Connecting regression and reinforcement learning
Continuous state space
Single trajectory, exponential beta-mixing
Fitted policy iteration with
..fixed Bellman-residual criterion

Finite-time performance bound
(Approximation error) + (estimation error)

(Bound holds for sup-norm)



FUTURE WORK

e Model selection, adaptivity (structural risk-minimization,
penalties)

Function set adapted to the problem (d(T F, ) — min)
Analysis/comparison of/with other algorithms (LSTD, AAVI,
FQI)

Continuous action space??

Algebraic mixing
On-line learning

Inverse problems: Pf =r, f =7
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DEFINITION OF ||-||,,,

2
o I3, = & Saca S If(x, a)2dw(x)



B-MIXING

DEFINITION
Let {Zi}i=1 2. be a stochastic process. Denote by Zli"_ the
collection (Z, ..., Z,), where we allow n = co. Let ¢(Z')

denote the sigma-algebra generated by Z' (i <j). The m-th
(B-mixing coefficient of {Z;}, A, is defined by

Bm = SupE sup  |P(B|z1Y —P(B)|
t>1 Beo(Zt+m:oo)

A stochastic process is said to be g-mixing if 5, — 0 as
m — oo.



EXTENSION OFNOBEL'S (1996)LEMMA

M: a family of partitions of &', m(): Cell-count of 1, G set of
bounded (|g| < K), real-valued functions

gon{fZng{AJ}ZTF{Aj}En,ngg}.

Aj em

on(+): Ve > 0, the empirical e-covering numbers of G on alll

subsets of the multiset [xy, ..., Xn] are majorized by ¢y (€).
Let x™N € AN, un(A) = % E|N:1 Ixieny
Let

d(m, ') = dyan(m, @) = un(r A7), 7={A}, 7 = {AJ/} e,

where
m(M)
rAr={xeXx:F£ixeAnA = |JALA,
j=1



EXTENSION OFNOBEL' S (1996)LEMMA 1.

LEMMA
Assume that m(1) < co. Then, forany ¢ > 0, « € (0,1)

Ni(e,G o MxN) S (S M dyan ) én(( = @)™,



THE COVERING NUMBERS FOR THE COMPOSITE
ACTION-VALUE FUNCTION SPACE

LEMMA
Let F Cc RY, |f| < K, x¥N € XN ¢y as before.

G2 = {li,()>hey | f1.f2 € F1

Then Ve > 0, o € (0, 1),

L(L—1)
N(e,fofL,lxl;N)le( b xt ) on((1-a)e),

L(L— 1)

where

N
Lan((f,Q"),(9,Q")) Z (X, 7(xe; Q")) — 9 (xt, A (xi; Q).

t=1
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