A Statistical Learning approach to Approximate Dynamic Programming

Rémi Munos

Centre de Mathématiques
Appliquées
Ecole Polytechnique

Csaba Szepesvari

Computer and Automation
Research Institute of the
Hungarian Academy of Sciences

Outline

- 1. L_p -norm error bounds in Approximate Dynamic Programming (Rémi)
- 2. PAC performance bounds in RL using Statistical Learning results (Csaba)

L_p -analysis for Approximate Dynamic Programming

Extend usual L_{∞} -norm analysis.

Benefits:

- Performance bounds for ADP in terms of approximation capacity of the function space
- Combine resuts from Statistical Learning theory, eg.
 - Complexity analysis, PAC performance bounds for RL, ...
 - Data-based function approximation (SVM, Kernels, ...)

Statistical Learning

 L_p -analysis in DP

RL and ADP analysis with function approximation

Example: value iteration

Markov Decision Problem: state space X, action space A, transition kernel P(dy|x,a), reward function r(x,a).

Policy $\pi: X \to A$. Value function V^{π} = the performance of π (eg. discounted with $\gamma < 1$, infinite hozizon):

$$V^{\pi}(x) = \mathbb{E}\left[\sum_{t>0} \gamma^t r(x_t, a_t) \,|\, x_0 = x, \, a_t = \pi(x_t)\right]$$

The optimal value function $V^* = \max_{\pi} V^{\pi}$ is the fixed-point $V^* = \mathcal{T}V^*$ of the Bellman operateur:

$$\mathcal{T}f(x) = \max_{a \in A} \left[r(x, a) + \gamma \int P(dy|x, a) f(y) \right].$$

 \mathcal{T} is a contraction mapping in L_{∞} , thus V^* may be computed by value iteration $V_{n+1} = \mathcal{T}V_n$.

Approximate value iteration

Continuous (or large discrete) space -> need to use representations.

Approximate value iteration algorithm:

$$V_{n+1} = \mathcal{A}TV_n,$$

where A is an approximation operator.

Example: \mathcal{F} is finite-dimensional linear subspace of a Hilbert space, and \mathcal{A} the orthogonal projection (wrt. L_2) onto \mathcal{F} .

Properties:

- \mathcal{T} is a contraction mapping in L_{∞} ,
- \mathcal{A} is non-expansive in L_2

Problem: we can't say anything about \mathcal{AT} !

L_{∞} -analysis of AVI

Write $\epsilon_n = V_{n+1} - \mathcal{T}V_n$ the approximation error. Performance bound for AVI [Bertsekas & Tsitsiklis, 1996]

$$\limsup_{n\to\infty} ||V^* - V^{\pi_n}||_{\infty} \le \frac{2\gamma}{(1-\gamma)^2} \limsup_{n\to\infty} ||\epsilon_n||_{\infty}.$$

Nice bound, but:

- How does the uniform error $||\epsilon_n||_{\infty}$ relates to the empirical error $\max_i |\epsilon_k(x_i)|$ (based on the data $\{x_i\}$) minimized by a real algorithm?
- Well... actually, a real algorithm performs a L_p empirical minimization! (except for exceptions... like averagers [Gordon, 1995]), ie.

$$V_{n+1} = \arg\min_{f \in \mathcal{F}} \frac{1}{N} \sum_{i=1}^{N} |f(x_i) - \mathcal{T}V_n(x_i)|^p$$

(think about least squares regression, neural networks, SVM, kernel...)

L_p -analysis of AVI

Let μ be a distribution on X. Write: $||f||_{p,\mu} = (\int \mu(dx)|f(x)|^p)^{1/p}$.

Assume $P(\cdot|x, a)$ has a density wrt. μ (uniformly for $x \in X$, $a \in A$), ie, there exists $C(\mu) < \infty$ such that,

$$P(\cdot|x,a) \le C(\mu)\mu(\cdot)$$

Then:

$$\limsup_{n\to\infty} ||V^* - V^{\pi_n}||_{\infty} \le \frac{2\gamma}{(1-\gamma)^2} C(\mu)^{1/p} \limsup_{n\to\infty} ||\epsilon_n||_{p,\mu}.$$

Bound in terms of the L_p approximation errors.

Statistical Learning theory gives us (see Csaba's part):

$$||\epsilon_n||_{p,\mu} \le \left[\frac{1}{K} \sum_{k=1}^K |\epsilon_n(x_k)|^p\right]^{1/p} + E(K, VC(\mathcal{F}), \dots)$$

L_p -analysis of AVI (continued)

Assumption 1: for all $x \in X$, $a \in A$,

$$P(\cdot|x,a) \le C(\mu)\mu(\cdot)$$

Then:

$$\limsup_{n\to\infty} ||V^* - V^{\pi_n}||_{\infty} \le \frac{2\gamma}{(1-\gamma)^2} C(\mu)^{1/p} \limsup_{n\to\infty} ||\epsilon_n||_{p,\mu}.$$

We recover the usual L_{∞} bounds when $p \to \infty$.

Assumption 2 : for all sequence of policies $\pi_1, \pi_2, \ldots,$

$$(1-\gamma)^2 \sum_{m>1} m \gamma^{m-1} \Pr(x_m \in dy | x_0 \sim \rho, \pi_1, \dots, \pi_m) \le C(\rho, \mu) \mu(dy).$$

Then:

$$\limsup_{n \to \infty} ||V^* - V^{\pi_n}||_{p,\rho} \le \frac{2\gamma}{(1-\gamma)^2} C(\rho,\mu)^{1/p} \limsup_{n \to \infty} ||\epsilon_n||_{p,\mu}.$$

Other ADP algorithms

It seems that all usual L_{∞} analysis in DP generalizes to L_p -norm.

- Policy Iteration [Munos, 2003]. Performance bound

$$\limsup_{n \to \infty} ||V^* - V^{\pi_n}||_{\infty} \le \frac{2\gamma}{(1 - \gamma)^2} C(\mu)^{1/p} \varepsilon_{\mathcal{F}}.$$

in terms of the representation power of the value functions $\{V^{\pi_n}\}$ in the function space

$$\varepsilon_{\mathcal{F}} = \limsup_{n \to \infty} \inf_{f \in \mathcal{F}} ||V^{\pi_n} - f||_{p,\mu}.$$

- Bellman residual minimization

$$||V^* - V^{\pi}||_{\infty} \le \frac{2}{1 - \gamma} C(\mu)^{1/p} ||\mathcal{T}V - V||_{p,\mu}.$$

Some insights: pointwise bounds

Assume that for $u, v \geq 0$ one has $u \leq Qv$, with Q a transition kernel.

- Then, $||u||_{\infty} \leq ||v||_{\infty}$ (since $||Q||_{\infty} = 1$)
- But also, if ρ and μ are probability distributions on X s.t. $\rho Q = \mu$, then

$$||u||_{p,\rho} \le ||v||_{p,\mu}.$$

Indeed:

$$||u||_{p,\rho}^{p} = \int \rho(dx)|u(x)|^{p} \leq \int \rho(dx) |\int Q(x,dy)v(y)|^{p}$$

$$\leq \int \rho(dx) \int Q(x,dy)|v(y)|^{p}$$

$$= \int \mu(y)|v(y)|^{p} = ||v||_{p,\mu}^{p},$$

using Jensen's inequality.

Example : for $\rho = \mu$ stationary distribution for Q (ie. $\rho Q = \rho$).

Example: the Bellman residual bound

Let V a function on X. Let π be the greedy policy wrt. V, and V^{π} its performance. We have, pointwise,

$$V^* - V^{\pi} \le \left[(I - \gamma P^{\pi^*})^{-1} - (I - \gamma P^{\pi})^{-1} \right] (\mathcal{T}V - V)$$

Thus:

In L_{∞} -norm, [Williams & Baird, 1993]:

$$||V^* - V^{\pi}||_{\infty} \le \frac{2}{1 - \gamma} ||\mathcal{T}V - V||$$

In L_p -norm,

$$||V^* - V^{\pi}||_{\infty} \leq \frac{2}{(1 - \gamma)} C(\mu)^{1/p} ||\mathcal{T}V - V||_{p,\mu},$$

$$||V^* - V^{\pi}||_{p,\rho} \leq \frac{2}{(1 - \gamma)} [C(\rho, \mu)]^{1/p} ||\mathcal{T}V - V||_{p,\mu}.$$

Perspectives

- ADP analysis in the same L_p -norm as the one used in the approximation operation -> tight and useful bounds.
- Control generalization error
- Combine with results in approximation theory and statistical learning theory, eg. kernel methods in RKHS