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Outline

1. L,-norm error bounds in Approximate Dynamic Programming (Rémi)

2. PAC performance bounds in RL using Statistical Learning results

(Csaba)
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/Lp-analysis for Approximate Dynamic Programming \

Extend usual L,.-norm analysis.

Benefits :

— Performance bounds for ADP in terms of approximation capacity of the
function space

— Combine resuts from Statistical Learning theory, eg.
— Complexity analysis, PAC performance bounds for RL, ...
— Data-based function approximation (SVM, Kernels, ...)

Statistical Learnin
& RL and ADP analysis with

function approximation

—>

L,-analysis in DP
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/Example : value iteration \

Markov Decision Problem : state space X, action space A, transition

kernel P(dy|z,a), reward function r(x,a).

Policy 7 : X — A. Value function V™ = the performance of 7 (eg.
discounted with v < 1, infinite hozizon) :

VTi(z) = E[nyt’r(mt, a) | xo =z, ap = w(z¢)]

>0

The optimal value function V* = max, V" is the fixed-point
V* =7TV* of the Bellman operateur :

T§(x) = max [r(z,0) + 7 [ Pldyla,a)f ()],

a€A

7 is a contraction mapping in L., thus V* may be computed by value
iteration V,,. 1 = 7TV,,.
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/Approximate value iteration \

Continuous (or large discrete) space —> need to use representations.

Approximate value iteration algorithm :
Vn—l—l — ATVna

where A is an approximation operator.

Example : F is finite-dimensional linear subspace of a Hilbert space, and

A the orthogonal projection (wrt. Lo) onto F.
Properties :

— 7 is a contraction mapping in L.,

— A is non-expansive in Lo

Problem : we can’t say anything about A7 !
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/Loo-analysis of AVI \

Write ¢,, = V,,..1 — 7V,, the approximation error. Performance bound for
AVTI [Bertsekas & Tsitsiklis, 1996]

2
limsup ||V = V™| < i 5 limsup |[€p || oo

Nice bound, but :

— How does the uniform error ||€, || relates to the empirical error
max; |ex(x;)| (based on the data {z;}) minimized by a real algorithm ?
— Well... actually, a real algorithm performs a L, empirical minimization !

(except for exceptions... like averagers |Gordon, 1995]), ie.

N

1
Vh41 = arg ]ch%l;} N ; |f(x;) — TVy(z)|P

K (think about least squares regression, neural networks, SVM, kernel...)/




/Lp-analysis of AVI

o = (] plda)| f(z)[) 7.

Assume P(:|z,a) has a density wrt. p (uniformly for z € X, a € A), ie,
there exists C'(u) < oo such that,

P(|z,a) < C(p)p(:)

Let u be a distribution on X. Write : ||f]

Then :

. « - 27y .
limsup [[V" — V™| < QC(u)”phmsupHenllp,u-

n— 00 ( — ")/) n— 00

Bound in terms of the L, approximation errors.

Statistical Learning theory gives us (see Csaba’s part) :

lén)

pop S [% kz_: |€n(96k)|P} e + E(K,VC(¥),...)

N
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/Lp-analysis of AVI (continued)

Assumption 1 : for all z € X, a € A,

P(|z,a) < C(p)p(:)
Then :

. . - 27y .
limsup [[V* = V™| < Qc(ﬂ)l/pthUPHEan,M'

n— 00 ( — '7) n— 00

We recover the usual L., bounds when p — oc.

Assumption 2 : for all sequence of policies 7, ms, ...,

m>1
Then :
] VE V|l € O, )7
1msup|| ||P,P—( . )2 (p,,lL) lmsupHEan,u-

N

(L=)2 Y my" 'Pr(am, € dy|zo ~ p, 71, ..., 7m) < Clp, 1) pu(dy).
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/Other ADP algorithms

n—oo

function space

N

It seems that all usual L., analysis in DP generalizes to L,-norm.

— Policy Iteration [Munos, 2003|. Performance bound

2
limsup ||V — V™ ||oo < ———C(n) /e .

(1—7)

er = limsup inf ||V — :
F n_wop fefH pr,u

— Bellman residual minimization

k T 2
V* = Voo < ——C()"P|TV = V||p, -

L —~

~

in terms of the representation power of the value functions {V"™"} in the
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/Some insights : pointwise bounds \

Assume that for u,v > 0 one has u < Qu, with () a transition kernel.

= Then, [[uf|sc < [|v]|s (since ||Q[|oc = 1)
— But also, if p and p are probability distributions on X s.t. pQ = u, then

HUHp,p < ||UHp,u°

Indeed :
|2, = / p(dz)u(z)P < / o(dz)| / Qla, dy)o(y)[”
< / o(dz) / Q(a, dy)[o(y)l”
_ / W) @) = [vl[2 .

using Jensen’s inequality.

Gxample : for p = p stationary distribution for @ (ie. pQ = p). /
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/Example : the Bellman residual bound \

Let V a function on X. Let m be the greedy policy wrt. V', and V™ its
performance. We have, pointwise,

VeV < (I —aPT )T = (=P (TV - V)
Thus :
In L —norm, |Williams & Baird, 1993] :

* 7T 2
V"~ VTl < ||V - V|
8l
In L,—norm,

V" =V leo

IA

C(H)l/p| |TV - V’ |p,uv

IA

*k T 1
1V =Vl [Clo, )] "PNTV = V]|

\_ 7 Y,
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/Perspectives \

— ADP analysis in the same L,-norm as the one used in the

approximation operation —> tight and useful bounds.

— Control generalization error

— Combine with results in approximation theory and statistical learning
theory, eg. kernel methods in RKHS




