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Overview

1 - Diffusion & analysis on data sets;

2 - Multiscale analysis: bottom-up, top-bottom constructions;

3 - Applications to Markov Decision Processes;

4 - Applications to Semi-Supervised Learning;

5 - Open problems, current and future research.

Big apology: large number of connections with the work of many researchers (in
various fields of machine learning, harmonic analysis, PDEs, probability, image
processing, numerical analysis), which I have no time to cite in this talk.
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Parametrizations and functions on data sets

A deluge of data: documents, web searching, customer databases, hyper-spectral
imagery (satellite, biomedical, etc...), social networks, gene arrays, proteomics
data, neurobiological signals, sensor networks, financial transactions, traffic
statistics (automobilistic, computer networks)...

Regression “on the set”

Common
feature in many of these applications: data
is given in “high-dimensional space”, however
it has “its own geometry” that is much lower
dimensional. It is interesting to: discover
and characterize intrinsic properties, such as
local dimensionality, local parametrizations.
Moreover, in many applications one needs
to study functions on the data, and perform
tasks such as approximation, smoothing, interpolation, extension to new data.
One needs good basis functions on the data, with efficient algorithms for
performing these operations.
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An example from Molecular Dynamics

The dynamics of a small protein in a bath of water molecules is approximated by
a Langevin system of stochastic equations ẋ = −∇U(x) + ẇ .

The alanine molecule

The set of states of the protein
is a noisy set of points in R36, since we
have 3 coordinates for each of the 12 atoms.
This set is a priori very complicated. However
we expect for physical reasons that the
constraints on the molecule to force this set
to be essentially lower-dimensional. We can
explore the space of states by running long
simulations, for different initial conditions.
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In fact, as expected this set of points is much lower-dimensional.

Embedding of the set of states of the molecule.

We are able to discover this lower-dimensional
set, parametrize it, estimate
its local dimensionality (it is not constant!),
consider natural classes of (diffusion)
operators on this set, and build Fourier
and wavelet bases on it. For example it turns
out that some of the parameters discovered
by chemists on the basis of experiments
and chemical-physical considerations
can be discovered empirically as being
Fourier-like functions on the set of states!



ICML Kernel Workshop Laplacian and wavelet bases for value function approximation - kernel methods - Mauro Maggioni, Yale Univ.6

'

&

$

%

The Heat Kernel and the Laplacian on Manifolds

Starting point: the heat kernel and diffusion(s).

In Euclidean space: Laplacian very natural because of its invariance under the
natural symmetries of the space. Connections: Heat kernel - Brownian motion -
potential theory - the heat equation.

These objects are natural in much general settings, such as manifolds and
graphs. Their properties relate to geometric properties of the space; they allow
(for example through spectral theory) to define function spaces, operators, and
bases that are natural generalization of their classical counterparts.s

On Riemannian manifolds we have the Laplace-Beltrami operator ∆.
Corresponding heat kernel e−t∆ = Green’s function for the heat equation on the
manifold, associated with Brownian motion “restricted” to the manifold.
Spectral decomposition:

∆φi = λiφi , Ht(x, y) := e−t∆(x, y) =
∑

i

e−tλi︸ ︷︷ ︸
µt

i

φi(x)φi(y) .

The eigenfunctions φi of the Laplacian generalize Fourier modes: Fourier analysis
on manifolds, global analysis.
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Example of Eigenfunctions

Eigenfunctions on a dumbell-shaped manifold, and corresponding diffusion map; pictures courtesy of Stephane Lafon.
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Rougher worlds: graph associated with data sets

A deluge of data: documents, web searching, customer databases, hyper-spectral
imagery (satellite, biomedical, etc...), social networks, gene arrays, proteomics
data, financial transactions, traffic statistics (automobilistic, computer
networks)...

Assume we know how to assign local similarities: map data set to weighted
graph. Global distances are not to be trusted!

Data often given as points in high-dimension, but constraints (natural,
physical...) force it to be intrinsically low-dimensional.

Model the data as a weighted graph (G,E, W ): vertices represent data points
(correspondence could be stochastic), edges connect similar data points, weights
represent a similarity measure. Example: have an edge between web pages
connected by a link; or between documents with very similar word frequencies.
When points are in high-dimensional Euclidean space, weights may be a function
of Euclidean distance, and/or the geometry of the points. How to define the
similarity between very similar objects in each category is important but not
always easy. That’s the place where field-knowledge goes.
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Laplacian on Graphs

Given a weighted graph (G,W,E), the combinatorial Laplacian is defined by
L = D −W , where (D)ii =

∑
j Wij , and the normalized Laplacian is defined by

L = D− 1
2 (D −W )D− 1

2 .

These are self-adjoint positive-semi-definite operators, let λi and φi be the
eigenvalues and eigenvectors. Fourier analysis on graphs. The heat kernel is of
course defined by Ht = e−tL; the natural random walk is D−1W .

dgeod.(A, B) ∼ dgeod.(C, B), however d(t)(A, B) >> d(t)(C, B).



ICML Kernel Workshop Laplacian and wavelet bases for value function approximation - kernel methods - Mauro Maggioni, Yale Univ.10

'

&

$

%

Geometrization of Diffusion

Diffusion distance at time t is defined by

d(t)(x, y) = ||Ht/2(x, ·)−Ht/2(y, ·)||L2(M)

=
√
〈δx − δy,Ht(δx − δy)〉

=
√∑

i

µt
i(φi(x)− φi(y))2

Surprisingly, the eigenfunctions of the Laplacian
also allow to analyse the geometry of the manifold,
and provide embeddings of the manifold (“diffusion
maps”): for m = 1, 2, . . . , t > 0 and x ∈M, define

Φ(t)
m (x) = (µ

t
2
i φi(x))i=1,...,m ∈ Rm .

This map is an approximate isometry (it is an isometry for m = +∞) to
Euclidean Rm from M with the diffusion metric (not the Riemannian metric!).
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Diffusion maps: Example

Recall the definition of “diffusion map”: for m = 1, 2, . . . , t > 0 and x ∈M,
define

Φ(t)
m (x) = (µ

t
2
i φi(x))i=1,...,m ∈ Rm .

Eigenfunctions on a dumbell-shaped manifold, and corresponding diffusion map; pictures courtesy of Stephane Lafon.
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Example from Molecular Dynamics revisited

The dynamics of a small protein in a bath of water molecules is approximated by
a Langevin system of stochastic equations ẋ = −∇U(x) + ẇ. Many millions of
points in R36 can be generated by simulating of the stochastic ODE, U is needed
only “on the fly” and only at the current positions (not everywhere in R36).

Embedding of the set of states of the molecule.

Then a graph
Laplacian on this set of points can
be constructed, that approximated
the Fokker-Planck operator, and the
eigenfunctions of this approximation
yield a low-dimensional
description and parametrization
of the set, as well as a subspace
in which the long-term behavior
of the system can faithfully projected.
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Stability of eigenfunctions, I

The data is often noisy, and the similarity matrices are usually noisy as well +
useful to compare graphs of different sizes (e.g. graphs representing same
physical system sampled at different rates).

Would like to have results that guarantee the stability of the eigenfunctions
under rather general classes of transformations.

Model of perturbation: rough isometries. Let X, Y be two metric spaces. A map
Φ : X → Y is called a (a′Φ, b′Φ, aΦ, bΦ, τΦ)-rough isometry, for
a′Φ, b′Φ, τ ′Φ, aΦ, bΦ, τΦ ≥ 0, if for every x1, x2 ∈ X

a′ΦdX(x1, x2)− b′Φ ≤ dY (Φ(x1), Φ(x2)) ≤ aΦdX(x1, x2) + bΦ

and for every y ∈ Y , dY (y, Φ(X)) ≤ τΦ.
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Several Applications

Many successful applications of spectral kernel methods. For Laplacian
eigenfunctions, the following works in particular:

• Regression and classification in the supervised and semi-supervised learning
context [M. Belkin, P. Nyogi; RR Coifman, MM, A.D. Slzam]

• fMRI data [F. Meyer, X. Shen]

• Art data [W Goetzmann, PW Jones, MM, J Walden]

• Hyperspectral Imaging in Pathology [MM, GL Davis, F Warner, F.
Geshwind, A Coppi, R. DeVerse, RR Coifman]

• Molecular dynamics simulations [RR. Coifman, G.Hummer, I. Kevrekidis, S.
Lafon, MM, B. Nadler]

• Text documents classification [RR. Coifman, S. Lafon, A. Lee, B. Nadler; RR
Coifman, MM]
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Application to text document classification

1000 Science News articles, from 8 different categories. We compute about 10000
coordinates, i-th coordinate of document d represents frequency in document d of
the i-th word in a fixed dictionary. The diffusion map gives the embedding
below. Clustering in the range of diffusion map results in good unsupervised
performance for document classification.
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Summary for the “Fourier part”

• it is useful to consider only local similarities between data points;

• it is possible to organize this local information by diffusion;

• parametrizations can be found by looking at the eigenvectors of a diffusion
operator (Fourier modes);

• these eigenvectors yield a nonlinear embedding into low-dimensional
Euclidean space;

• the eigenvectors can be used for global Fourier analysis on the set/manifold.

Problem: Either very local information or very global information: in many
problems the intermediate scales are very interesting! Would like multiscale
information!

Possibility 1: proceed bottom-up: repeatedly cluster together in a multi-scale
fashion, in a way that is faithful to the operator: diffusion wavelets.

Possibility 2: proceed top-bottom: cut greedily according to global information,
and repeat procedure on the pieces: recursive partitioning, local cosines...

Possibility 3: do both!
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A multiscale “network”
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Multiscale Analysis, I

As an analysis, we construct multiscale bases on manifolds, graphs, point clouds.

Classical constructions of wavelets are based on geometric transformations (such
as dilations, translations) of the space, transformed into actions (e.g. via
representations) on functions. There are plenty of such transformations on Rn,
certain classes of Lie groups and homogeneous spaces (with automorphisms that
resemble “anisotropic dilations”), and manifolds with large groups of
transformations.

Here the space is in general highly non-symmetric, not invariant under ”natural”
geometric transformation, and moreover it is “noisy”.

Idea: use diffusion and the heat kernel as dilations, acting on functions on the
space, to generate multiple scales.

This is connected with the work on diffusion or Markov semigroups, and
Littlewood-Paley theory of such semigroups (a la Stein).

We would like to have constructive methods for efficiently computing the
multiscale decompositions and the wavelet bases.
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Multiscale Analysis, II

[Joint with RR Coifman]

Suppose for simplicity we have a weighted graph (G,E,W ), with corresponding
Laplacian L and random walk P . Let us renormalize, if necessary, P so it has
norm 1 as an operator on L2: let T be this operator. Assume for simplicity that
T is self-adjoint, and high powers of T are low-rank: T is a diffusion, so range of
T t is spanned by smooth functions of increasingly (in t) smaller gradient.

A “typical” spectrum for the powers of T would look like this:
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Diffusion Wavelets on Dumbell manifold
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Coarsening of Markov chains

We now consider a simple example of a Markov chain on a graph with 8 states.

T =




0.80 0.20 0.00 0.00 0.00 0.00 0.00 0.00

0.20 0.79 0.01 0.00 0.00 0.00 0.00 0.00

0.00 0.01 0.49 0.50 0.00 0.00 0.00 0.00

0.00 0.00 0.50 0.499 0.001 0.00 0.00 0.00

0.00 0.00 0.00 0.001 0.499 0.50 0.00 0.00

0.00 0.00 0.00 0.00 0.50 0.49 0.01 0.00

0.00 0.00 0.00 0.00 0.00 0.01 0.49 0.50

0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50




From the matrix it is clear that the states are grouped into four pairs {ν1, ν2},
{ν3, ν4}, {ν5, ν6}, and {ν7, ν8}, with weak interactions between the the pairs.
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Construction of Diffusion Wavelets
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Diagram for downsampling, orthogonalization and operator compression. (All triangles

are commutative by construction)
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{Φj}
J
j=0, {Ψj}

J−1
j=0 , {[T 2j

]
Φj

Φj
}J

j=1 ← DiffusionWaveletTree ([T ]Φ0
Φ0

, Φ0, J, SpQR, ǫ)

// [T ]Φ0
Φ0

: a diffusion operator, written on the o.n. basis Φ0

// Φ0 : an orthonormal basis which ǫ-spans V0

// J : number of levels to compute

// SpQR : a function compute a sparse QR decomposition, template below.

// ǫ: precision

// Output: The orthonormal bases of scaling functions, Φj , wavelets, Ψj , and

// compressed representation of T 2j

on Φj , for j in the requested range.

for j = 0 to J − 1 do

[Φj+1]Φj
, [T ]Φ1

Φ0
←SpQR([T 2j

]
Φj

Φj
, ǫ)

Tj+1 := [T 2j+1

]
Φj+1

Φj+1
← [Φj+1]Φj

[T 2j

]
Φj

Φj
[Φj+1]

∗
Φj

[Ψj ]Φj
← SpQR(I〈Φj〉 − [Φj+1]Φj [Φj+1]

∗
Φj

, ǫ)

end

Q, R ← SpQR (A, ǫ) // A: sparse n × n matrix, ǫ: precision

// Output: Q, R matrices, hopefully sparse, such that A =ǫ QR, Q is n × m and orthogonal,

// R is m × n, and upper triangular up to a permutation,

// the columns of Q ǫ-span the space spanned by the columns of A.
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Thinking multiscale on graphs...

Investigating other constructions:

• Biorthogonal diffusion wavelets, in which scaling functions are probability
densities (useful for multiscale Markov chains)

• Top-bottom constructions: recursive subdivision

• Both...

Applications:

• Document organization and classification

• Markov Decision Processes

• Nonlinear Analysis of Images

• Semi-supervised learning through diffusion processes on data



ICML Kernel Workshop Laplacian and wavelet bases for value function approximation - kernel methods - Mauro Maggioni, Yale Univ.27

'

&

$

%

Application to text document Classification
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Scaling functions at different scales represented on the set embedded in R3 via (ξ3(x), ξ4(x), ξ5(x)).

φ3,4 is about Mathematics, but in particular applications to networks, encryption and number

theory; φ3,10 is about Astronomy, but in particular papers in X-ray cosmology, black holes, galaxies;

φ3,15 is about Earth Sciences, but in particular earthquakes; φ3,5 is about Biology and Anthropology,

but in particular about dinosaurs; φ3,2 is about Science and talent awards, inventions and science

competitions.
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Top-bottom constructions

Spatial partitioning: use top (non-trivial) Neumann eigenfunction to cut the
domain in two pieces, repeat on sub-domains, always by re-imposing Neumann
boundary conditions. The Neumann nodal line is the minimizer of the
asymptotic probability of escape of Brownian motion from a sub-domain, i.e. the
subdivision of D into domains D1 and D2 that minimizes λ where there is a
constants Cx so that

lim
t→∞

e−λtP (Bx /∈ Dx) = Cx,

and where x ∈ Dx, Bx is Brownian motion started at x, reflected on ∂D, and
killed on Γ = ∂Di − ∂D. Thus the division according to the eigenfunction is like
maximizing the volume to boundary area ratio as seen by a Brownian particle.

Gives binary tree, in practice, and at least in decent Euclidean domains, the
pieces thus obtained are quite regular. At each scale we have a partition of the
space into “dyadic” diffusion cubes.
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Smoothed Haar functions

Three smoothed Haar functions on a sphere sampled randomly at 2000 points.
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Application to Markov Decision Processes

[S. Mahadevan, MM]

A finite Markov decision process (MDP) M = (S, A, P a
ss′ , R

a
ss′) is defined as a

finite set of states S, a finite set of actions A, a transition model P a
ss′ specifying

the distribution over future states s′ when an action a is performed in state s,
and a corresponding reward model Ra

ss′ specifying a scalar cost or reward. A
state value function is a mapping S → R or equivalently a vector in R|S|. Given
a policy π : S → A mapping states to actions, its corresponding value function
V π specifies the expected long-term discounted sum of rewards received by the
agent in any given state s when actions are chosen using the policy. Any optimal
policy π∗ defines the same unique optimal value function V ∗ which satisfies the
nonlinear constraints

V
∗
(s) = max

a

∑

s′
P a

ss′ (R
a
ss′ + γV ∗(s′))

The state spaces of MDPs are often varifolds or graphs; it is crucial to represent
certain functions and operators (large-time expectation operators ∼ Green’s
operators) efficiently.



Policy Iteration
(Howard, PhD, MIT, 1959)

Policy Improvement:
(“Actor”) 

Policy Evaluation:
(“Critic”)

γ

γ
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Inverted Pendulum
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Left: Q-value function for the action “left”, reconstructed from its representation
of the diffusion wavelet basis. Right: trajectory of the pendulum in phase space
according to the policy learnt.
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Inverted Pendulum (cont’d)
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Top row: trajectory of angle and angle velocity variables. Bottom row: some
diffusion wavelets used as basis functions for representation during the learning
phase.
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Mountain Car
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Top left: Q-value function for the action “left”, reconstructed from its representation of the diffusion wavelet basis.
Top right: trajectory of the mountain car in phase space according to the policy learnt (107 steps). Bottom row:
some diffusion wavelets used as basis functions for representation during the learning phase.
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Comparison between eigenfunctions and standard sets of basis functions for two
environments: left an inverted pendulum, right the mountain car.
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Semi-supervised Learning on Graphs

[Joint with A.D.Szlam]

Given a graph G and χ1, . . . , χC characteristic functions of sets, representing
points labeled according to their class (e.g. document topics, digit in a
handwritten digit database, functionality of a protein in a protein network...).
These labels are known on a small subset G̃ of G, and we would like to guess the
labels of the non-labeled points. It is an interpolation or smoothing problem.

So far good results (in theory and in practice) with the use of eigenfunctions
[Belkin,Niyogi], even better results by using anisotropic diffusions on the graph
to smooth the label functions; just started work with diffusion wavelets for this
task and other machine learning tasks.

We are applying these techniques to handwritten digits, documents classification,
protein functionality prediction in protein networks.
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Semi-supervised Learning on Graphs, cont’d

[Joint with A.D.Szlam]

Eigenfunctions [Belkin-Niyogi]: Predict unlabeled points by projecting onto a
subspace spanned by low-frequency eigenfunctions, restricted to the labelled set
G̃. Motivations & assumptions: the label functions are smooth w.r.t. geometry
of space, eigenfunctions capture idea of smoothness with respect to the geometry.

New nonlinear technique: use diffusion process to smooth the label functions from
G̃ to functions on G. Each point has now a vector of probabilities of belonging to
different classes: use this extra information to design a better, anisotropic
diffusion on G, and start anew by applying this to the initial labels. Motivations:
the diffusion process is a much more flexible tool than eigenfunctions, for
example it is easy to tune time-scales, it is easily tuned to incorporate labeling
information, it has a better spectral properties than a spectral projector (e.g. no
Gibbs phenomenon), moreover it is very fast to compute!

Experiments on USPS zip code data set show this technique outperforms the
previous semi-supervised learning algorithms. We are applying this technique to
a problem in prediction of protein functionality, where there are more than 40
classes, with encouraging preliminary results.
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Current & Future work

Create a bag of tools for intrinsic analysis of and on data sets, mathematically
modeled as rather general classes of possibly wild sets in Euclidean space, or
graphs.

Ideally an analysis, tools, algorithms flexible enough to tackle different problems,
from nonlinear dimensionality reduction to semisupervised and supervised
learning and reinforcement learning.

Applications we are considering: signal processing on manifolds and graphs and
its applications (e.g. linear and nonlinear “image” denoising); classification
algorithms (e.g. text classification, protein and gene functional classification,
target recognition in hyper-spectral imaging); learning; application to Markov
decision processes; multiscale structures of complex networks and dynamical
systems.
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Collaborators

• R.R. Coifman, P.W. Jones (Yale Math) [Diffusion geometry; Diffusion wavelets; Uniformization

via eigenfunctions; Multiscale Data Analysis], S.W. Zucker (Yale CS) [Diffusion geometry];

• G.L. Davis (Yale Pathology), R.R. Coifman, F.J. Warner (Yale Math), F.B. Geshwind , A.

Coppi, R. DeVerse (Plain Sight Systems) [Hyperspectral Pathology];

• S. Mahadevan (U.Mass CS) [Markov decision processes];

• R. Schul (UCLA) [Uniformization via eigenfunctions; nonhomogenous Brownian motion];

• A.D. Szlam (Yale) [Diffusion wavelet packets, top-bottom multiscale analysis, linear and

nonlinear image denoising, classification algorithms based on diffusion];

• Y. Kevrekidis (Princeton Eng.), S. Lafon (Google), B. Nadler (Weizman) [stochastic dynamics];

• W. Goetzmann (Yale, Harvard Business School), J. Walden (Berkley Business School), P.W.

Jones (Yale Math) [Applications to finance]

• H. Mhaskar (Cal State, LA) [polynomial frames of diffusion wavelets, characterization of

function spaces];

• A. Paccanaro and R. Sasidharan (Yale, MicroBio.) [Semi-supervised learning for protein

network functionality prediction];

• J.C. Bremer (Yale) [Diffusion wavelet packets, biorthogonal diffusion wavelets];

• M. Mahoney (Yahoo Research), F. Meyer (UC Boulder), X. Shen (UC Boulder) [Randomized

algorithms for hyper-spectral and fMRI imaging]

Material (Matlab code, tutorial talks) available at www.math.yale.edu/∼mmm82.
Thank you!




