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Reinforcement Learning is Hard

Q-Learning made RL seem easy.
Convergence in the limit to optimal policy
Convergence for arbitrary finite Markov decision problems

Real-world problems are too hard for current algorithms.
Convergence in the limit is too slow.
Continuous state spaces limit convergence guarantees.
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Data-Efficient RL with Models
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Efficient incremental updates: Prioritized Sweeping
More data =⇒ accurate model
Accurate model =⇒ accurate value function
Accurate value function =⇒ good policy
How quickly can an accurate model be learned?
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Optimism in the Face of Uncertainty
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Use model uncertainty to guide exploration.
Assume that unfamiliar state-actions maximize value.
Propagate optimistic values throughout value function.
The resulting policy implicitly explores or exploits.
This approach, from Prioritized Sweeping, underlies
R-Max’s polynomial sample-complexity guarantee.
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Limits convergence guarantees
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Only approximately optimal in most cases
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Recent Trend: Offline Sample-Based Algorithms
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Compute best value function from entire sample.
Efficient use of collected data
Facilitates theoretical analysis

Kernel-Based RL: convergence to optimal in the limit

Still relies on random exploration in practice
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Approximation and Models?

Model-free, Discrete
Q-Learning
SARSA

Model-free, Continuous
Q-Learning w/ FA
Least-Squares Policy Iteration
Kernel-Based RL

Model-based, Discrete
Prioritized Sweeping
E3

R-Max

Model-based, Continuous
?

How to represent and reason about models of (stochastic)
continuous problems?
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Approximating Transitions from Data

Given: samples in the form <s, a, r , s′ >

Compute: Q(s, a) for a given s and a
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A Kernel-Based Bellman Equation

Continuous Bellman equation:

Q(s, a) = R(s, a) + γ

∫
T (s, a, s′)V (s′)ds′

A kernel-based approximation:

Q(s, a) =
1

Zs,a

∑
i|ai=a

φ

(
d(s, si)

b

) [
ri + γV (s′

i )
]

d : a distance function
φ: a univariate kernel function of distance
b: a parameter that controls the breadth of generalization
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Convergence to Optimality

As the sample size increases, the kernel-based
approximation converges in probability to the true value
function if:

The generalization breadth b decreases at an appropriate
rate.
An appropriate kernel (e.g. Gaussian) is used.
The reward function is continuous.
The data are uniformly sampled from the state space.

Approximate dynamic programming for continuous
problems
Prima facie an offline algorithm
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The Implicit Finite MDP

Q(s, a) =
1

Zs,a

∑
i|ai=a

φ

(
d(s, si)

b

) [
ri + γV (s′

i )
]

Only finitely many states are evaluated on right-hand side.
There exists a finite MDP for which the Bellman equations
are exact.

T (s, a, s′
i ) =

1
Zs,a

φ

(
d(s, si)

b

)
, if ai = a

R(s, a) =
1

Zs,a

∑
i|ai=a

φ

(
d(s, si)

b

)
ri
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Discrete Models to Approximate Continuous Problems

Q(s, a) =
1

Zs,a

∑
i|ai=a

φ

(
d(s, si)

b

) [
ri + γV (s′

i )
]

Q has a continuous domain; V has a finite domain.
We can compute V exactly given data.
Finite planning yields a continuous value function.

s[t]

r[t]

a[t]

s[t−1] a[t−1]
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Model-Based Exploration for Continuous Problems

Kernel-based approximation transforms continuous data
into discrete data.
We can apply model-based exploration techniques
developed for finite problems.
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Bias Due to High Generalization

Good empirical performance requires large generalization
breadth if action effects are relative stable.
Small generalization =⇒ less coverage =⇒ more data
needed
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Relative Transitions

Given sample transition si → s′
i , current state s

Absolute transition model proposes s′ = s′
i .

Relative transition model proposes s′ = s + (s′
i − si).
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Approximating Transitions and Approximating Values

Approximate unknown vector
with sample vectors

Approximate unknown state
with sample states

Kernels provide weights for approximations
Differing generalization for model and for values
Still induces finite MDP
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Mountain Car Domain

Two continuous state variables
Horizontal position: [−1.2, 0.5]
Horizontal velocity: [−0.07, 0.07]

Three actions: Reverse, Neutral,
Forward
Valley centered at position −0.5
Underpowered motor: must go left to
build kinetic energy
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Qualitative Results

A trajectory following a learned policy:
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Ablation Study

A policy learned using absolute transitions:
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A sample collected during a run using absolute transitions:
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Ablation Study

A neighborhood of the data:
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Ablation Study

Transitions predicted using relative transitions:
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Ablation Study
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The NIPS 2005 RL Benchmarking Workshop

Common interface for online RL
Three continuous domains, including Mountain Car
Permits comparisons against algorithms implemented and
tuned by other researchers
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Benchmark Results
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Summary

Approximation can be used for models instead of for value
functions.
Finite approximate models facilitate exploration in
continuous problems.
This approach yields a practical, data-efficient algorithm.

Outlook
Using more sophisticated model-based exploration
Learning effective kernels for high-dimensional problems
Properties that imply convergence to optimal policies
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For Further Reading I

Atkeson, Moore, & Schaal.
Locally weighted learning for control.
Artificial Intelligence Review, 11:75–113, 1997.

Moore & Atkeson.
Prioritized sweeping: reinforcement learning with less data
and less real time.
Machine Learning, 13:103–130, 1993.

Ormoneit & Sen.
Kernel-based reinforcement learning.
Machine Learning, 49(2):161–178, 2002.
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