Kernel-Based Models for Reinforcement Learning

Nicholas K. Jong Peter Stone

Department of Computer Sciences University of Texas at Austin

Kernel machines and Reinforcement Learning workshop, International Conference on Machine Learning, 2006

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

Motivation

- Model-Based Exploration
- Function Approximation
- 2 Kernel-Based Approximation
 - Kernel-Based Value Functions
 - Kernel-Based Models
 - Two Kinds of Approximation

3 Empirical Results

- Case Study
- Benchmark Performance

■ ▶ ▲ ■ ▶ ■ ■ ● ● ●

Model-Based Exploration Function Approximation

Outline

Motivation

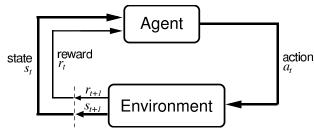
- Model-Based Exploration
- Function Approximation
- 2 Kernel-Based Approximation
 - Kernel-Based Value Functions
 - Kernel-Based Models
 - Two Kinds of Approximation
- 3 Empirical Results
 - Case Study
 - Benchmark Performance

★ E ▶ ★ E ▶ E E ♥ 9 Q @

< 🗇 🕨

Model-Based Exploration Function Approximation

Reinforcement Learning is Hard



• Q-Learning made RL seem easy.

- Convergence in the limit to optimal policy
- Convergence for arbitrary finite Markov decision problems
- Real-world problems are too hard for current algorithms.
 - Convergence in the limit is too slow.
 - Continuous state spaces limit convergence guarantees.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Model-Based Exploration Function Approximation

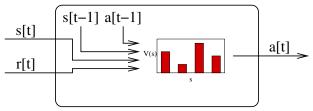
Reinforcement Learning is Hard

- Q-Learning made RL seem easy.
 - Convergence in the limit to optimal policy
 - Convergence for arbitrary finite Markov decision problems
- Real-world problems are too hard for current algorithms.
 - Convergence in the limit is too slow.
 - Continuous state spaces limit convergence guarantees.

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Model-Based Exploration Function Approximation

Reinforcement Learning is Hard

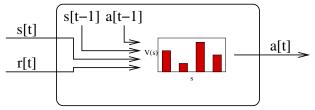


- Q-Learning made RL seem easy.
 - Convergence in the limit to optimal policy
 - Convergence for arbitrary finite Markov decision problems
- Real-world problems are too hard for current algorithms.
 - Convergence in the limit is too slow.
 - Continuous state spaces limit convergence guarantees.

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Model-Based Exploration Function Approximation

Reinforcement Learning is Hard

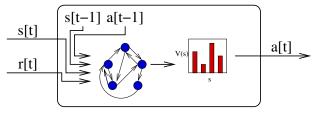


- Q-Learning made RL seem easy.
 - Convergence in the limit to optimal policy
 - Convergence for arbitrary finite Markov decision problems
- Real-world problems are too hard for current algorithms.
 - Convergence in the limit is too slow.
 - Continuous state spaces limit convergence guarantees.

★ E ► ★ E ► E E < 2000</p>

Model-Based Exploration Function Approximation

Data-Efficient RL with Models

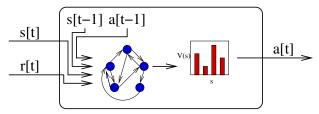


- Efficient incremental updates: Prioritized Sweeping
- More data \implies accurate model
- Accurate model \implies accurate value function
- Accurate value function \implies good policy
- How quickly can an accurate model be learned?

<□> < => < => < => = = の < ⊙

Model-Based Exploration Function Approximation

Optimism in the Face of Uncertainty

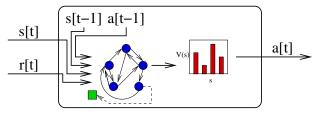


- Use model uncertainty to guide exploration.
- Assume that unfamiliar state-actions maximize value.
- Propagate optimistic values throughout value function.
- The resulting policy implicitly explores or exploits.
- This approach, from Prioritized Sweeping, underlies R-Max's polynomial sample-complexity guarantee.

<□> < □> < □> < □> = □ = のへの

Model-Based Exploration Function Approximation

Optimism in the Face of Uncertainty

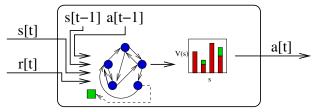


- Use model uncertainty to guide exploration.
- Assume that unfamiliar state-actions maximize value.
- Propagate optimistic values throughout value function.
- The resulting policy implicitly explores or exploits.
- This approach, from Prioritized Sweeping, underlies R-Max's polynomial sample-complexity guarantee.

<□> < □> < □> < □> = □ = のへの

Model-Based Exploration Function Approximation

Optimism in the Face of Uncertainty

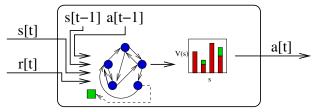


- Use model uncertainty to guide exploration.
- Assume that unfamiliar state-actions maximize value.
- Propagate optimistic values throughout value function.
- The resulting policy implicitly explores or exploits.
- This approach, from Prioritized Sweeping, underlies R-Max's polynomial sample-complexity guarantee.

<□> < □> < □> < □> = □ = のへの

Model-Based Exploration Function Approximation

Optimism in the Face of Uncertainty



- Use model uncertainty to guide exploration.
- Assume that unfamiliar state-actions maximize value.
- Propagate optimistic values throughout value function.
- The resulting policy implicitly explores or exploits.
- This approach, from Prioritized Sweeping, underlies R-Max's polynomial sample-complexity guarantee.

▲□ → ▲ 三 → ▲ 三 → 三 三 → の < (~

Model-Based Exploration Function Approximation

Outline

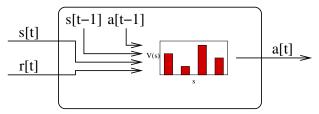
- Model-Based Exploration
- Function Approximation
- 2 Kernel-Based Approximation
 - Kernel-Based Value Functions
 - Kernel-Based Models
 - Two Kinds of Approximation
- 3 Empirical Results
 - Case Study
 - Benchmark Performance

★ E ► ★ E ► E E < 2000</p>

< 🗇 🕨

Model-Based Exploration Function Approximation

Generalization to Continuous State Spaces

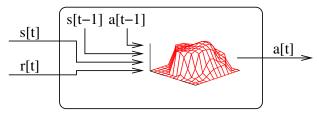


- Replace value function table with approximator.
- Limits convergence guarantees
 - Theoretical divergence in some cases
 - Only approximately optimal in most cases

<□> < E> < E> < E > E| = のへ⊙

Model-Based Exploration Function Approximation

Generalization to Continuous State Spaces

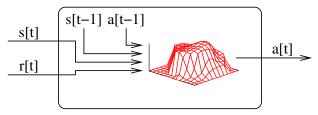


- Replace value function table with approximator.
- Limits convergence guarantees
 - Theoretical divergence in some cases
 - Only approximately optimal in most cases

<□> < E> < E> < E > E| = のへ⊙

Model-Based Exploration Function Approximation

Generalization to Continuous State Spaces

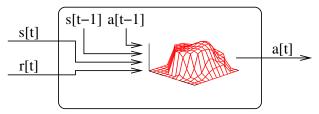


- Replace value function table with approximator.
- Limits convergence guarantees
 - Theoretical divergence in some cases
 - Only approximately optimal in most cases

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ = 𝒴 𝔄 𝔅

Model-Based Exploration Function Approximation

Recent Trend: Offline Sample-Based Algorithms

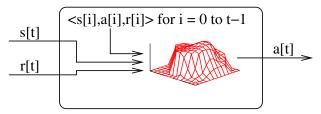


- Compute best value function from entire sample.
- Efficient use of collected data
- Facilitates theoretical analysis
 - Kernel-Based RL: convergence to optimal in the limit
- Still relies on random exploration in practice

<□> < E> < E> < E > E| = のへ⊙

Model-Based Exploration Function Approximation

Recent Trend: Offline Sample-Based Algorithms

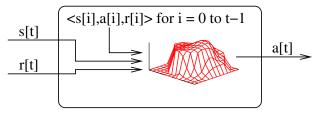


- Compute best value function from entire sample.
- Efficient use of collected data
- Facilitates theoretical analysis
 - Kernel-Based RL: convergence to optimal in the limit
- Still relies on random exploration in practice

★ E ▶ ★ E ▶ E E ♥ 9 Q @

Model-Based Exploration Function Approximation

Recent Trend: Offline Sample-Based Algorithms

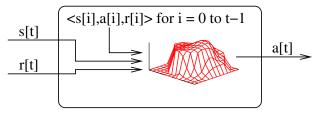


- Compute best value function from entire sample.
- Efficient use of collected data
- Facilitates theoretical analysis
 - Kernel-Based RL: convergence to optimal in the limit
- Still relies on random exploration in practice

★ E ► ★ E ► E E < 2000</p>

Model-Based Exploration Function Approximation

Recent Trend: Offline Sample-Based Algorithms



- Compute best value function from entire sample.
- Efficient use of collected data
- Facilitates theoretical analysis
 - Kernel-Based RL: convergence to optimal in the limit
- Still relies on random exploration in practice

Model-Based Exploration Function Approximation

Approximation and Models?

Model-free, Discrete Q-Learning	Model-free, Continuous Q-Learning w/ FA
SARSA	Least-Squares Policy Iteration Kernel-Based RL
Model-based, Discrete	Model-based, Continuous

?

Prioritized Sweeping F³

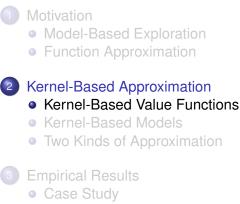
L R-Max

How to represent and reason about models of (stochastic) continuous problems?

◆□ > ◆□ > ◆豆 > ◆豆 > 三日日 のへで

Kernel-Based Value Functions Kernel-Based Models Two Kinds of Approximation

Outline



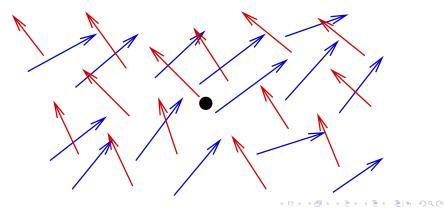
Benchmark Performance

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ = 𝒴 𝔄 𝔅

< 🗇 🕨

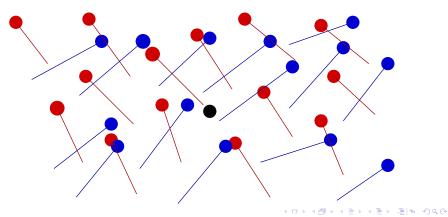
Kernel-Based Value Functions Kernel-Based Models Two Kinds of Approximation

- Given: samples in the form $\langle s, a, r, s' \rangle$
- Compute: Q(s, a) for a given s and a



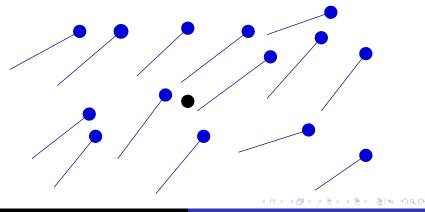
Kernel-Based Value Functions Kernel-Based Models Two Kinds of Approximation

- Given: samples in the form $\langle s, a, r, s' \rangle$
- Compute: Q(s, a) for a given s and a



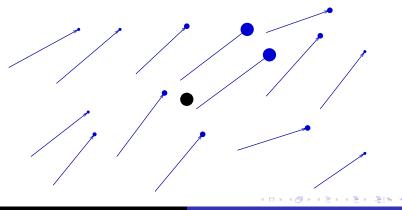
Kernel-Based Value Functions Kernel-Based Models Two Kinds of Approximation

- Given: samples in the form $\langle s, a, r, s' \rangle$
- Compute: Q(s, a) for a given s and a



Kernel-Based Value Functions Kernel-Based Models Two Kinds of Approximation

- Given: samples in the form $\langle s, a, r, s' \rangle$
- Compute: Q(s, a) for a given s and a



Kernel-Based Value Functions Kernel-Based Models Two Kinds of Approximation

A Kernel-Based Bellman Equation

• Continuous Bellman equation:

$$Q(s, a) = R(s, a) + \gamma \int T(s, a, s') V(s') ds'$$

• A kernel-based approximation:

$$Q(s, a) = \frac{1}{Z_{s,a}} \sum_{i|a_i=a} \phi\left(\frac{d(s, s_i)}{b}\right) \left[r_i + \gamma V(s'_i)\right]$$

- *d*: a distance function
- ϕ : a univariate kernel function of distance
- b: a parameter that controls the breadth of generalization

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Kernel-Based Value Functions Kernel-Based Models Two Kinds of Approximation

Convergence to Optimality

- As the sample size increases, the kernel-based approximation converges in probability to the true value function if:
 - The generalization breadth *b* decreases at an appropriate rate.
 - An appropriate kernel (e.g. Gaussian) is used.
 - The reward function is continuous.
 - The data are uniformly sampled from the state space.
- Approximate dynamic programming for continuous problems
- Prima facie an offline algorithm

<□> < E> < E> < E > E| = のへ⊙

Kernel-Based Value Functions Kernel-Based Models Two Kinds of Approximation

Outline

<□> < E> < E> < E > E| = のへ⊙

Kernel-Based Value Functions Kernel-Based Models Two Kinds of Approximation

The Implicit Finite MDP

$$Q(s, a) = \frac{1}{Z_{s,a}} \sum_{i|a_i=a} \phi\left(\frac{d(s, s_i)}{b}\right) \left[r_i + \gamma V(s'_i)\right]$$

- Only finitely many states are evaluated on right-hand side.
- There exists a finite MDP for which the Bellman equations are exact.

$$T(s, a, s'_i) = \frac{1}{Z_{s,a}} \phi\left(\frac{d(s, s_i)}{b}\right), \text{ if } a_i = a$$
$$R(s, a) = \frac{1}{Z_{s,a}} \sum_{i|a_i=a} \phi\left(\frac{d(s, s_i)}{b}\right) r_i$$

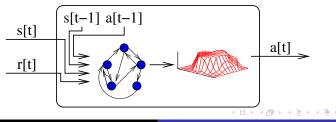
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Kernel-Based Value Functions Kernel-Based Models Two Kinds of Approximation

Discrete Models to Approximate Continuous Problems

$$Q(s, a) = \frac{1}{Z_{s,a}} \sum_{i|a_i=a} \phi\left(\frac{d(s, s_i)}{b}\right) \left[r_i + \gamma V(s'_i)\right]$$

- Q has a continuous domain; V has a finite domain.
- We can compute *V* exactly given data.
- Finite planning yields a continuous value function.

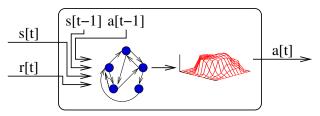


ELE OQO

Kernel-Based Value Functions Kernel-Based Models Two Kinds of Approximation

Model-Based Exploration for Continuous Problems

- Kernel-based approximation transforms continuous data into discrete data.
- We can apply model-based exploration techniques developed for finite problems.

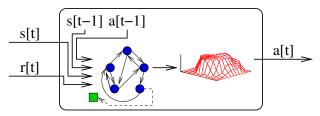


<□> < E> < E> < E > E| = のへ⊙

Kernel-Based Value Functions Kernel-Based Models Two Kinds of Approximation

Model-Based Exploration for Continuous Problems

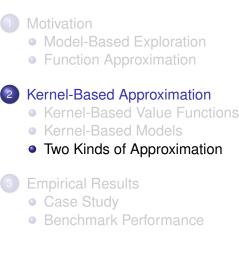
- Kernel-based approximation transforms continuous data into discrete data.
- We can apply model-based exploration techniques developed for finite problems.



★ E ▶ ★ E ▶ E E ♥ 9 Q @

Kernel-Based Value Functions Kernel-Based Models Two Kinds of Approximation

Outline

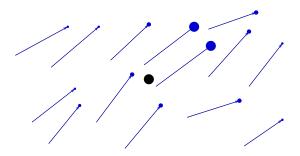


★ E ► ★ E ► E E < </p>

< 🗇 🕨

Kernel-Based Value Functions Kernel-Based Models Two Kinds of Approximation

Bias Due to High Generalization

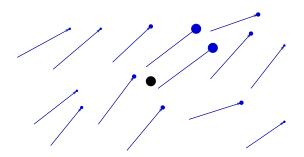


- Good empirical performance requires large generalization breadth if action effects are relative stable.
- Small generalization \implies less coverage \implies more data needed

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Kernel-Based Value Functions Kernel-Based Models Two Kinds of Approximation

Relative Transitions



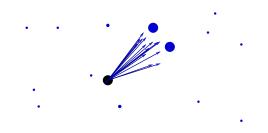
- Given sample transition $s_i \rightarrow s'_i$, current state s
- Absolute transition model proposes $s' = s'_i$.

• Relative transition model proposes $s' = s + (s'_i - s_i)$.

(ロ) (同) (三) (三) (三) (三) (○)

Kernel-Based Value Functions Kernel-Based Models Two Kinds of Approximation

Relative Transitions

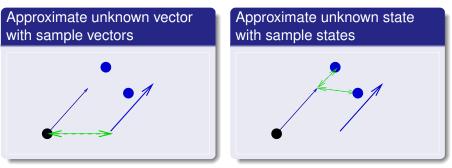


- Given sample transition $s_i \rightarrow s'_i$, current state s
- Absolute transition model proposes $s' = s'_i$.
- Relative transition model proposes $s' = s + (s'_i s_i)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Kernel-Based Value Functions Kernel-Based Models Two Kinds of Approximation

Approximating Transitions and Approximating Values



- Kernels provide weights for approximations
- Differing generalization for model and for values
- Still induces finite MDP

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Case Study Benchmark Performance

Outline

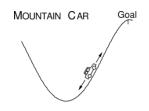
3 Empirical Results

- Case Study
- Benchmark Performance

Case Study Benchmark Performance

Mountain Car Domain

- Two continuous state variables
 - Horizontal position: [-1.2, 0.5]
 - Horizontal velocity: [-0.07, 0.07]
- Three actions: Reverse, Neutral, Forward
- Valley centered at position -0.5
- Underpowered motor: must go left to build kinetic energy

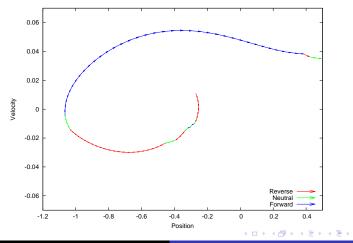


★ E ► ★ E ► E E < 2000</p>

Case Study Benchmark Performance

Qualitative Results

A trajectory following a learned policy:



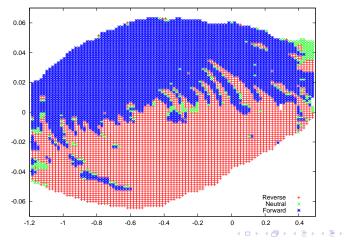
Nicholas K. Jong, Peter Stone Kernel-Based Models for Reinforcement Learning

1 = 990

Case Study Benchmark Performance

Qualitative Results

A learned policy:



Nicholas K. Jong, Peter Stone

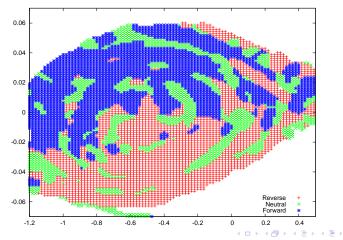
Kernel-Based Models for Reinforcement Learning

포네크

Case Study Benchmark Performance

Ablation Study

A policy learned using absolute transitions:



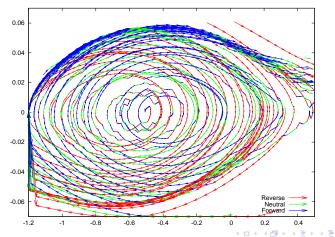
Nicholas K. Jong, Peter Stone

Kernel-Based Models for Reinforcement Learning

Case Study Benchmark Performance

Ablation Study

A sample collected during a run using absolute transitions:



Nicholas K. Jong, Peter Stone

Kernel-Based Models for Reinforcement Learning

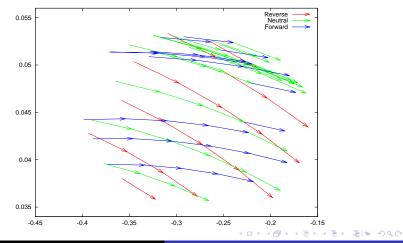
æ

= 200

Case Study Benchmark Performance

Ablation Study

A neighborhood of the data:



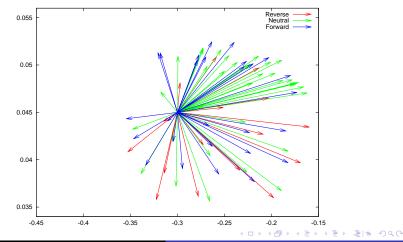
Nicholas K. Jong, Peter Stone

Kernel-Based Models for Reinforcement Learning

Case Study Benchmark Performance

Ablation Study

Transitions predicted using absolute transitions:



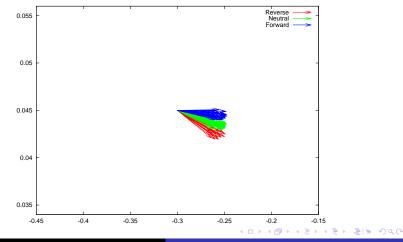
Nicholas K. Jong, Peter Stone

Kernel-Based Models for Reinforcement Learning

Case Study Benchmark Performance

Ablation Study

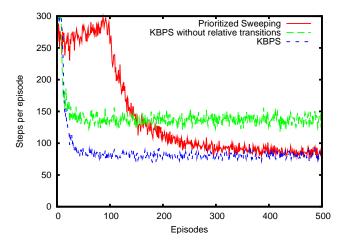
Transitions predicted using relative transitions:



Nicholas K. Jong, Peter Stone Kernel-Based Models for Reinforcement Learning

Case Study Benchmark Performance

Ablation Study



Nicholas K. Jong, Peter Stone Kernel-Based Models for Reinforcement Learning

ъ

ELE DQC

Case Study Benchmark Performance

Outline

3 Empirical Results

- Case Study
- Benchmark Performance

Case Study Benchmark Performance

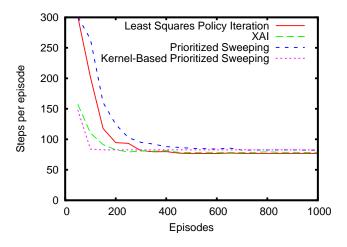
The NIPS 2005 RL Benchmarking Workshop

- Common interface for online RL
- Three continuous domains, including Mountain Car
- Permits comparisons against algorithms implemented and tuned by other researchers

<□> < => < => < => = = の < ⊙

Case Study Benchmark Performance

Benchmark Results



Nicholas K. Jong, Peter Stone Kernel-Based Models for Reinforcement Learning

3

ELE OQO

Summary

- Approximation can be used for models instead of for value functions.
- Finite approximate models facilitate exploration in continuous problems.
- This approach yields a practical, data-efficient algorithm.

Outlook

- Using more sophisticated model-based exploration
- Learning effective kernels for high-dimensional problems
- Properties that imply convergence to optimal policies

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

For Further Reading I

Atkeson, Moore, & Schaal. Locally weighted learning for control. Artificial Intelligence Review, 11:75–113, 1997.

Moore & Atkeson. Prioritized sweeping: reinforcement learning with less data and less real time.

Machine Learning, 13:103–130, 1993.

Ormoneit & Sen.

Kernel-based reinforcement learning.

Machine Learning, 49(2):161–178, 2002.

同 ト イヨ ト イヨ ト 三 日 つくつ