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Timeline

• ICML’03: Bayes meets Bellman paper – GPTD model for

MDPs with deterministic transitions

• ICML’05: RL with GPs paper – GPTD model for general

MDPs + GPSARSA for learning control

• NIPS’05: Learning to control an Octopus Arm – GPTD applied

to a high dimensional control problem

• OPNET’05: Network association-control with GPSARSA
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Why use GPs in RL?

• A Bayesian approach to value estimation

• Forces us to to make our assumptions explicit

• Non-parametric – priors are placed and inference is performed

directly in function space (kernels).

• But, can also be defined parametrically

• Domain knowledge intuitively coded in priors

• Provides full posterior, not just point estimates

• Efficient, on-line implementations, suitable for large problems
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The Bayesian Approach

Z Y

• Z – hidden process, Y – observable

• We want to infer Z from measurements of Y

• Statistical dependence between Z and Y known: P (Y |Z)

• Place prior over Z, reflecting our uncertainty: P (Z)

• Observe Y = y

• Compute posterior: P (Z|Y = y) = P (y|Z)P (Z)
R

dZ′P (y|Z′)P (Z′)
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Gaussian Processes

Definition: “An indexed set of jointly Gaussian random variables”

Note: The index set X may be just about any set.

Example: F (x), index is x ∈ [0, 1]n

F ’s distribution is specified by its mean and covariance:

E
[

F (x)
]

= m(x) , Cov
[

F (x), F (x′)
]

= k(x,x′)

m is a function X → R, k is a function X × X → R.

Conditions on k:

Symmetric, positive definite ⇒ k is a Mercer kernel
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GP Regression

Model equation:

Y (x) = F (x) + N(x)

Prior:

F ∼ N {0, k(·, ·)}

Noise:

N ∼ N
{

0, σ2δ(· − ·)
}

Goal:

Find the posterior distribution of F ,

given a sample for Y (via Bayes’ rule)
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Example
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Markov Decision Processes

X : state space

U : action space

p: X × X × U → [0, 1], xt+1 ∼ p(·|xt,ut)

q: IR ×X × U → [0, 1], R(xt,ut) ∼ q(·|xt,ut)

A Stationary policy:

µ: U × X → [0, 1], ut ∼ µ(·|xt)

Discounted Return: Dµ(x) =
∑∞

i=0 γiR(xi,ui)|(x0 = x)

Value function: V µ(x) = Eµ[Dµ(x)]

Goal: Find a policy µ∗ maximizing V µ(x) ∀x ∈ X
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Bellman’s Equation

For a fixed policy µ:

V µ(x) = E
x

′,u|x

[

R(x,u) + γV µ(x′)
]

Optimal value and policy:

V ∗(x) = max
µ

V µ(x) , µ∗ = argmax
µ

V µ(x)

How to solve it?

- Methods based on Value Iteration (e.g. Q-learning)

- Methods based on Policy Iteration (e.g. SARSA, OPI,

Actor-Critic)
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Solution Method Taxonomy

Value−Function based
Purely Policy based
(Policy Gradient)

Policy Iteration typeValue Iteration type
(Q−Learning) (Actor−Critic, OPI, SARSA)

RL  Algorithms

PI methods need a “subroutine” for policy evaluation

10/30



Kernel-RL workshop – ICML’06

What’s Missing?

Shortcomings of current policy evaluation methods:

• Some methods can only be applied to small problems

• No probabilistic interpretation - how good is the estimate?

• Only parametric methods are capable of operating on-line

• Non-parametric methods are more flexible but only work off-line

• Small-step-size (stoch. approx.) methods use data inefficiently

• Finite-time solutions lack interpretability, all statements are

asymptotic

• Convergence issues
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Gaussian Process Temporal Difference Learning

Model Equations:

R(xi) = V (xi) − γV (xi+1) + N(xi,xi+1)

Or, in compact form:

Rt = Ht+1Vt+1 + Nt

Ht =















1 −γ 0 . . . 0

0 1 −γ . . . 0

...
...

0 0 . . . 1 −γ















.

Our (Bayesian) goal:

Find the posterior distribution of V ,

given a sequence of observed states and rewards.
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Deterministic Dynamics

Bellman’s Equation:

V (xi) = R̄(xi) + γV (xi+1)

Define:

N(x) = R(x) − R̄(x)

Assumption: N(xi) are Normal, i.i.d., with variance σ2.

Model Equations:

R(xi) = V (xi) − γV (xi+1) + N(xi)

In compact form:

Rt = Ht+1Vt+1 + Nt , with Nt ∼ N
{

0, σ2I
}
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Stochastic Dynamics

The discounted return:

D(xi) = EµD(xi) + (D(xi) −EµD(xi)) = V (xi) + ∆V (xi)

For a stationary MDP:

D(xi) = R(xi) + γD(xi+1) (where xi+1 ∼ p(·|xi,ui), ui ∼ µ(·|xi))

Substitute and rearrange:

R(xi) = V (xi) − γV (xi+1) + N(xi,xi+1)

N(xi,xi+1)
def

= ∆V (xi) − γ∆V (xi+1)

Assumption: ∆V (xi) are Normal, i.i.d., with variance σ2.

In compact form:

Rt = Ht+1Vt+1 + Nt , with Nt ∼ N
{

0, σ2Ht+1H
>
t+1

}
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The Posterior

General noise covariance: Cov[Nt] = Σt

Joint distribution:




Rt−1

V (x)



 ∼ N











0

0



 ,





HtKtH
>
t + Σt Htkt(x)

kt(x)>H>
t k(x,x)











Invoke Bayes’ Rule:

E[V (x)|Rt−1 = rt−1] = kt(x)>αt

Cov[V (x), V (x′)|Rt−1 = rt−1] = k(x,x′) − kt(x)>Ctkt(x
′)

kt(x) = (k(x0,x), . . . , k(xt,x))> , Kt = [kt(x0), . . . ,kt(xt)]

αt = H
>

t

“

HtKtH
>

t + Σt

”

−1

rt−1, Ct = H
>

t

“

HtKtH
>

t + Σt

”

−1

Ht.
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A Parametric Gaussian Process Model

A linear combination of features:

V (x) = φ(x)>W

1 . . . .x φ ( ) φ ( )
2 n

xxφ ( )

Wn
W

W1
2

Σ

Prior on W : Gaussian, with E[W ] = 0, Cov[W, W ] = I

Prior on V : Gaussian, with

E[V (x)] = 0, Cov[V (x), V (x′)] = φ(x)>φ(x′)
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Comparison of Models

Parametric Nonparametric

Parametrization V (x) = φ(x)>W None, V is V

Prior W ∼ N {0, I} V ∼ N {0, k(·, ·)}

E[V (x)] 0 0

Cov[V (x), V (x′)] φ(x)>φ(x′) k(x,x′)

We seek W |Rt−1 V (x)|Rt−1

If we can find a set of basis functions satisfying

φ(x)>φ(x′) = k(x,x′), the two models become equiva-

lent.

In fact, such a set always exists [Mercer].

However, it may be infinite
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Relation to Monte-Carlo Estimation

In the stochastic model: Σt = σ2Ht+1H
>
t+1

Also, let: (Yt)i =
∑t

j=i γj−iR(xi,ui)

Then:

E[W |Rt] =
(

ΦtΦ
>
t + σ2I

)−1

ΦtYt

Cov[W |Rt] = σ2
(

ΦtΦ
>
t + σ2I

)−1

That’s the solution to GP regression on Monte-Carlo

samples of the discounted return.
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MAP / ML Solutions

Since the posterior is Gaussian:

ŵMAP
t+1 = E[W |Rt] =

(

ΦtΦ
>
t + σ2I

)−1

ΦtYt

Performing ML inference using the same model we get:

ŵML
t+1 =

(

ΦtΦ
>
t

)−1

ΦtYt

That’s the LSTD(1) (Least-Squares Monte-Carlo) solution.
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Policy Improvement

How can we perform policy improvement?

State values? Not without a transition model (even then tricky).

State-action (Q-) values? Yes!

Idea: Use a state-action value GP

How?

• Define a state-action kernel: k
(

(x,u), (x′,u′)
)

• Run GPTD on state-action pairs

• Use some semi-greedy action selection rule

We call this GPSARSA.
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The Octopus Arm

Can bend and twist at any point

Can do this in any direction

Can be elongated and shortened

Can change cross section

Can grab using any part of the arm

Virtually infinitely many DOF
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Our Arm Model
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Actions

Each action specifies a set of fixed activations –

one for each muscle in the arm.

Action # 1 Action # 2 Action # 3

Action # 4 Action # 5 Action # 6

Base rotation adds duplicates of actions 1,2,4 and 5 with

positive and negative torques applied to the base.
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The Control Problem

Starting from a random position, bring {any part, tip} of arm

into contact with a goal region, optimally.

Optimality criteria:

Time, energy, obstacle avoidance

Constraint:

We only have access to sampled trajectories

Our approach:

Define problem as a MDP

Solve using a GPTD algorithm
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The Task
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Movies
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Association Control in WLANs
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Association Control in WLANs

Setting: n users, m � n access points (APs),

The problem: Associate users with APs, optimally.

Complications: Users are not the same, they move around, change

their behavior over time, what is meant by “optimally”? etc.

Idea: Model the system as a MDP, solve using GPSARSA

Results:

• Tested on simple networks using the OPNET simulator

• Preliminary results look promising

• More work is needed
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Challenges

• How to use value uncertainty?

• What’s a disciplined way to select actions?

• What’s the best noise covariance?

• Bias, variance, learning curves

• POMDPs

• More complicated tasks

Questions?
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