
Kernel-Based Models for Reinforcement Learning

Nicholas K. Jong nkj@cs.utexas.edu
Peter Stone pstone@cs.utexas.edu

Department of Computer Sciences, University of Texas at Austin, Austin, TX 78712 USA

Abstract

Model-based approaches to reinforcement
learning exhibit low sample complexity while
learning nearly optimal policies, but they are
generally restricted to finite domains. Mean-
while, function approximation addresses con-
tinuous state spaces but typically weak-
ens convergence guarantees. In this work,
we develop a new algorithm that combines
the strengths of Kernel-Based Reinforcement
Learning, which features instance-based state
representation and kernel-based function
approximation, and Prioritized Sweeping,
which features model-based exploration. The
resulting algorithm, Kernel-Based Prioritized
Sweeping, empirically converges to good poli-
cies in continuous domains with relatively
small amounts of data.

1. Introduction

Research into reinforcement learning (RL) (Sutton
& Barto, 1998) addresses an extraordinarily general
problem: how to learn good behavior policies in ar-
bitrary unknown environments. Elegant and compu-
tationally efficient canonical algorithms, such as Q-
learning (Watkins, 1989), belie the difficulty of this
problem by promising asymptotic convergence to op-
timal behavior for any finite domain. Practical appli-
cations challenge RL techniques in at least two ways.
First, the cost of obtaining data implies a need for al-
gorithms with low sample complexity. Second, contin-
uous state spaces require generalization methods that
preserve convergence to good policies.

Model-based approaches address the sample complex-
ity issue by directly estimating the effect of each ac-
tion at each state. This approach facilitates the ef-
ficient reuse of data, and reasoning about the uncer-

Appearing in Kernel machines for reinforcement learning
workshop, Pittsburgh, PA, 2006. Copyright 2006 by the
author(s)/owner(s).

tainty in the model allows these algorithms to bal-
ance exploration and exploitation. Algorithms such as
Prioritized Sweeping1 exhibit good sample complex-
ity for finite problems (Moore & Atkeson, 1993). An-
other model-based algorithm, E3, provides the first
polynomial-time convergence guarantees (Kearns &
Singh, 1998). However, these approaches do not gen-
eralize directly to continuous problems with stochas-
tic dynamics, due to the difficulty in representing and
reasoning with continuous distributions over possible
transitions.

Current RL algorithms for continuous state spaces
typically rely on function approximation to general-
ize the value function directly, without estimating a
model. Kernel-based reinforcement learning (KBRL)
computes a value function offline by generalizing value-
function updates from a given sample of transitions
over an instance-based representation (Ormnoneit &
Sen, 2002). KBRL is noteworthy for its theoretical
guarantee of convergence to the optimal value func-
tion as its sample size increases, under appropriate
assumptions, but it does not answer the exploration
question of how to efficiently gather the data online.

The primary contribution of this paper is a novel algo-
rithm that bridges the gap between function approx-
imation, which handles continuous state spaces, and
the model-based approach, which handles intelligent
exploration. It also contributes a new perspective on
KBRL that emphasizes its connection to model-based
RL. This perspective permits the combination of the
function approximation of KBRL with the exploration
mechanism of Prioritized Sweeping. The result is a
practical algorithm, Kernel-Based Prioritized Sweep-
ing (KBPS), which solves continuous domains with
empirically small amounts of data.

1Although this name has come to be associated with a
particular method for updating a value function, here we
denote the entire RL algorithm originally presented under
that name.

Kernel-Based Models for Reinforcement Learning

2. Preliminaries

This section describes background and prior work.
First, we review the formalism that underlies value-
based approaches to RL. Then we review Prioritized
Sweeping, a relatively straightforward model-based
approach to RL that learns efficiently in finite state
spaces. Finally, we summarize KBRL, an instance-
based algorithm for computing value functions over
continuous state spaces.

2.1. Markov Decision Processes

A RL task is defined by a Markov decision problem
(MDP), which is a four tuple 〈S, A, T,R〉 consisting
of a finite state space S, a finite action space A, a
transition function T : S × A × S → R, and a reward
function R : S × A → R (Puterman, 1994). From a
given state s ∈ S, a given action a ∈ A produces an
expected reward of R(s, a) and transitions to another
state s′ ∈ S with probability T (s, a, s′).

Given an MDP, planning algorithms compute a pol-
icy π : S → A that maximizes cumulative rewards.
Classical approaches employ dynamic programming to
compute the value function V : S → R, where V (s)
is the maximum expected cumulative reward possi-
ble from s. An optimal policy π satisfies π(s) =
argmaxaQ(s, a), where Q : S × A → R is defined
by Q(s, a) = R(s, a) + γ

∑
s′ T (s, a, s′)V (s′). The dis-

count factor γ ∈ [0, 1] is sometimes necessary to ensure
that the value function does not diverge.

2.2. Model-Based RL

RL algorithms compute policies without the benefit
of knowing the transition and reward functions T and
R. Model-free algorithms compute a value function
directly from experience data, but model-based algo-
rithms first estimate the underlying MDP from the
experience data. Standard MDP planning techniques,
such as value iteration (Puterman, 1994), can then
compute an optimal policy from the estimated model.

For finite domains, learning the model online is
straightforward. It suffices to maintain for each state
s and each action a: the total one-step reward rs,a

earned by executing a in s, the total number of times
ns,a that a has been executed in s, and for each other
state s′ the total number of times ns,a,s′

that execut-
ing a in s transitioned to s′. Then, at any point in
time, the maximum-likelihood estimates of the transi-
tion and reward functions are T̂ (s, a, s′) = ns,a,s′

/ns,a

and R̂(s, a) = rs,a/ns,a.

One practical concern for online model-based RL is

how to plan efficiently given the changing model.
Moore and Atkeson (1993) showed how to update the
estimated value function V̂ incrementally given an
incremental update to the model. Whereas typical
value iteration updates the value of every state dur-
ing each iteration, Prioritized Sweeping maintains a
priority queue of states. Whenever V̂ (s′) changes by
an amount δ, the algorithm adds each state s to the
priority queue with priority maxa T̂ (s, a, s′)δ. Each
time the agent takes an action, the algorithm first up-
dates one state-action pair in the model, then updates
the value of that state-action pair, and finally uses
the available computational time to propagate changes
throughout the value function by recomputing V̂ for
the first states in the priority queue.

The Prioritized Sweeping algorithm also includes a
simple model-based approach to the exploration prob-
lem. For a given state s and action a, it only uses the
maximum-likelihood estimates T̂ (s, a, ·) and R̂(s, a) if
ns,a exceeds some threshold nknown. Below this thresh-
old, the algorithm assumes that not enough data exists
to accurately estimate the outcome of executing a in s,
so it optimistically assumes a deterministic transition
to a fictional absorbing state sfinal with constant value
V (sfinal) = rmax

1−γ , where rmax is some upper bound
on the one-step reward. The algorithm thus com-
putes an optimistic value function V opt from an op-
timistic model

〈
S ∪ {sfinal}, A, T̂ opt, R̂opt

〉
, where for

all s ∈ S, a ∈ A, and s′ ∈ S:

T̂ opt(s, a, s′) =
{

T̂ (s, a, s′), if ns,a ≥ nknown

0, otherwise
(1)

R̂opt(s, a) =
{

R̂(s, a), if ns,a ≥ nknown

rmax, otherwise.
(2)

We define T̂ opt(s, a, s′) in the appropriate way if s =
sfinal or s′ = sfinal. Thus, if the agent is in a
state s with an insufficiently explored action a, then
Q̂opt(s, a) = Vmax and the agent will choose a (or an-
other exploratory action if more than one exists). Fur-
thermore, since the agent propagates these optimistic
values to the rest of the state space, it navigates to un-
known regions so long as the optimistic cost of reaching
the exploratory states is small compared to rewards
available in the known regions.

This directed form of exploration helps to minimize
the amount of experience that Prioritized Sweeping re-
quires to learn. What data the algorithm does collect
it tabulates into a model, which it uses repeatedly to
update the value function. However, this data-efficient
approach does not generalize directly to problems with
continuous state spaces and stochastic dynamics, given
the lack of an efficient way to estimate the transition

Kernel-Based Models for Reinforcement Learning

function. In domains such as robotics, the assumption
of deterministic dynamics permits the use of regres-
sion to learn the model (Atkeson et al., 1997), but
this method only allows reasoning about the average
outcome, not the set of possible outcomes.

2.3. Kernel-Based RL

In contrast, KBRL is an approach that computes con-
tinuous value functions directly from a set of histor-
ical outcomes (Ormnoneit & Sen, 2002). Intuitively,
KBRL approximates the outcome of an action a from
a given state s as the average of previous outcomes of
that action, weighted by a function of the distances be-
tween s and the previous initial states. Let s1, . . . , sn

be a set of states sampled from a continuous state
space S that has a distance metric d. Suppose that
for each state si we have an associated transition: an
executed action ai, observed reward ri, and observed
successor state s′i. Then KBRL defines approximate
Bellman equations for all s ∈ S and all a ∈ A as fol-
lows:

Q̂(s, a) =
1

Zs,a

∑
i|ai=a

φ

(
d(si, s)

b

)
[ri + γV̂ (s′i)], (3)

where V̂ (s) = maxa Q̂(s, a) as usual, b is a bandwidth
parameter that scales the distance function, φ is a non-
negative function that determines the relative weight
of each transition, and Zs,a =

∑
j|aj=a φ

(
d(sj ,s)

b

)
nor-

malizes the weights. We use Gaussian kernels to com-
pute these weights, so φ(x) = e−x2

. The bandwidth
parameter b thus corresponds to the standard devia-
tion of each Gaussian.

Let D = {s′i} be the set of observed successor states.
Although V̂ is a function over a continuous space S,
we can perform value iteration feasibly by storing and
updating V̂ (D), since Equation 3 only evaluates V̂ on
the finite subset D. Assuming that the true transition
and reward functions are suitably well behaved and
the transitions for each action are sampled uniformly,
the unique fixed point of this value iteration converges
in probability to the true value function as the sample
size grows, although the bandwidth b must decrease at
a suitable rate to balance the variance and bias of V̂
(Ormnoneit & Sen, 2002).

With its instance-based value-function representation
and kernel-based generalization, KBRL offers accurate
value-function approximation for continuous RL prob-
lems. However, Ormnoneit and Sen (2002) construe
KBRL principally as an offline algorithm and do not
address the question of exploration versus exploita-
tion. In the next section, we will recast KBRL as a

method for approximating a continuous domain with
finite model, permitting the use of model-based explo-
ration techniques.

3. Kernel-Based Models for RL

Here we combine the strengths of the two RL ap-
proaches described in Sections 2.2 and 2.3 to pro-
duce an online, model-based algorithm that accurately
handles stochastic environments with continuous state
spaces. For our purposes, we explicitly cast KBRL
as a means to approximate an unknown continuous
MDP M with a finite MDP M̃ defined over sam-
pled transitions. As before, let D be the set of sam-
pled successor states. We define a transition function
T̃ : S×A×D → R and reward function R̃ : S×A→ R
as follows for all s ∈ S, a ∈ A, and s′i ∈ D:2

T̃ (s, a, s′i) =

{
1

Zs,a φ
(

d(si,s)
b

)
if ai = a

0 otherwise
(4)

R̃(s, a) =
1

Zs,a

∑
i|ai=a

φ

(
d(si, s)

b

)
ri. (5)

Since D ⊂ S, we observe that M̃ = 〈D,A, T̃ , R̃〉
is a well defined finite MDP. Note that for all s ∈
D the definition in Equation 3 of the approximate
value function Q̂ for the continuous MDP M corre-
sponds exactly to the definition of the true value func-
tion Q̃ for the finite model M̃ : Q̃(s, a) = R̃(s, a) +
γ

∑
s′

i
T̃ (s, a, s′i)Ṽ (s). This perspective yields a much

simpler proof that KBRL converges to a unique fixed
point than the one Ormoneit and Sen offered, merely
by construing the algorithm as computing the exact
value function for an approximate finite MDP instead
of computing an approximate value function for an
unknown continuous MDP. Conversely, the theoreti-
cal results of Ormnoneit and Sen (2002) imply that,
as the sample size grows, for every s ∈ D, the value
Ṽ (s) in the approximate finite MDP converges to the
true value V (s) in the continuous MDP. Furthermore,
we can accurately compute Q̂(s, a) for any state in the
original continuous state space by simply using Equa-
tion 3, substituting Ṽ for V̂ in the right-hand side,
since these two value functions agree on D.

3.1. Online KBRL

The ability to import existing model-based techniques
is a key practical benefit of treating KBRL as an al-
gorithm that transforms data into an approximate fi-

2For the sake of convenience, we abuse notation by
quantifying over s′

i instead of s′. Note that for any s′ ∈ D
we may choose i such that s′

i = s′.

Kernel-Based Models for Reinforcement Learning

nite MDP, instead of into an approximate value func-
tion. Many model-based approaches depend princi-
pally on tabulated data in the form of the quantities
ns,a, ns,a,s′

, and rs,a for all s, a, and s′, defined in
Section 2.2. For a set of sample transitions from a
continuous MDP M , we can define “pseudodata” for
the induced MDP M̃ as follows:

ñs,a,s′
i =

{
φ
(

d(si,s)
b

)
if ai = a

0 otherwise
(6)

ñs,a = Zs,a =
∑

i

ñs,a,s′
i (7)

r̃s,a =
∑

i|ai=a

φ

(
d(si, s)

b

)
ri. (8)

Computing the maximum-likelihood transition and re-
ward functions from this pseudodata yields the esti-
mates given in Equations 4 and 5. This identity sug-
gests a general method for adapting model-based algo-
rithms developed for finite domains to the continuous
case. We simply replace the standard model update
given a new transition (st, at, rt, st+1) with the follow-
ing procedure:

Algorithm 1 GrowModel(st, at, rt, st+1)
1: Add st+1 to the set of states D
2: for all a do {Define the model at the new state}
3: for all s′i do
4: Initialize ñst+1,a,s′

i according to Equation 6
5: Initialize ñst+1,a according to Equation 7
6: Initialize r̃st+1,a according to Equation 8
7: end for
8: end for
9: for all s′i 6= st+1 do {Update other states}

10: Initialize ñs′
i,at,st+1 according to Equation 6

11: Add ñs′
i,at,st+1 to ñs′

i,at

12: Add ñs′
i,at,st+1r to r̃s′

i,at

13: end for

Applying this approach to Prioritized Sweeping yields
a new algorithm:

Algorithm 2 Kernel-Based Prioritized Sweeping
1: repeat
2: In state s, execute a, receive r, and observe s′

3: a′ ← argmaxaQ̂opt(s′, a)
4: GrowModel(s, a, r, s′)
5: Compute Ṽ opt(s)
6: Propagate changes to Ṽ opt

7: s← s′

8: a← a′

9: until s′ is terminal

Note that in line 3 we compute the value function at a
new state st+1 before adding st+1 to the model, using
an optimistic version of Equation 3. This slight mod-
ification to the order of steps in Prioritized Sweeping
allows us to initialize Ṽ (st+1) to a reasonable value.
In the next iteration of the main loop, we recompute
Ṽ (st+1) in line 5, after st+1 as been added to the
model. We use prioritized value updates, as described
in Moore and Atkeson (1993), to propagate the change
in value due to adding the transition. Provided that
we allow enough value updates to converge, the value
function after each iteration of the loop will be equal
to the value function that KBRL would compute of-
fline given the same data, modified only to include
Prioritized Sweeping’s optimistic exploration strategy.
We refer to this algorithm as Kernel-Based Prioritized
Sweeping (KBPS).

3.2. Relative Transition Models

Early experiments with KBPS revealed a tendency to
learn poor policies. In practice, the bandwidth param-
eter b must be large enough to prevent KBPS from
taking an enormous number of exploratory actions, to
visit every neighborhood of the state space. However,
a relatively high amount of generalization introduces
bias into the learned model. This section examines
a primary source of bias for many typical application
domains and proposes a modification to the KBRL
approximation scheme that significantly improves the
accuracy of KBPS in these domains.

Consider computing the transition function for the
state shown in Figure 1a, which shows three nearby
sample transitions for one of the actions. Our approx-
imate model predicts that the successor state from the
given point will be one of these three previously ob-
served successor states, as shown in Figure 1b. Al-
though the action in question consistently shifted the
state in the same general direction, to the upper right,
the approximate model assigns substantial probability
to moving in the opposite direction. With sufficiently
biased data, this unlikely outcome may even become
the expected outcome according to the approximate
model. The problem is that the generalization breadth
of the kernel is large relative to the magnitude of the
action’s effect. As a result, the location of a predicted
successor states depends as much on the historical lo-
cation of the initial state as on the action itself.

To ameliorate the problem, we propose a modification
to the kernelized model. Given a state s, this model
uses a sample transition from si to s′i not to predict an
absolute transition to s′i but to predict a relative tran-
sition to s+(s′i−si), as illustrated in Figure 1c. How-

Kernel-Based Models for Reinforcement Learning

(a) (b) (c)

Figure 1: (a) A query point in some state space with three
nearby sample transitions. (b) Three possible transitions
predicted by KBRL. (c) Transitions predicted by a relative
transition model.

ever, this predicted successor state is unlikely to re-
side in D, the set of previously visited successor states,
making it difficult to estimate the value of s, which de-
pends on the values of its successors. Hence, although
this approach better captures the true dynamics of the
system, it prevents efficient planning, which relies on
the transition model being closed under D. We rectify
this problem by using a second kernel to approximate
a transition to s + (s′i− si) as a weighted combination
of transitions to the states in D. To this end, we de-
fine the pseudodata for a particular model transition
as follows:

ñs,a,s′
=

∑
i|ai=a

φ

(
d(si, s)

b

) φ
(

d(s′,s+(s′
i−si))

h

)
ws,i

, (9)

where h is another bandwidth parameter and ws,i =∑
s′∈D φ

(
d(s′,s+(s′

i−si))
h

)
normalizes the weights. Note

that the first application of the kernel φ weights the
contribution of each transition towards the transi-
tion model for a given state, with bandwidth pa-
rameter b, and the second application, normalized by
ws,i, weights the contribution of each successor state
towards the approximation of each transition, with
bandwidth parameter h.

This formulation reveals a second source of uncertainty
in the approximate model. The first source, mea-
sured by ns,a, arises from having too few relevant sam-
ple transitions to estimate the change that an action
causes. The second source, measured by ws,i, arises
from having too few nearby states to approximate the
state resulting from a given change. In KBPS, we can
behave optimistically with regard to the second source
using an analogous exploration mechanism. In partic-
ular, we define optimistic pseudodata

ñs,a,s′

opt =
∑

i|ai=a∧

ws,i≥wknown

φ

(
d(si, s)

b

) φ
(

d(s′,s+(s′
i−si))

h

)
ws,i

, (10)

where wknown controls the number of nearby model
states required to approximate a transition outcome.

Note that unlike the absolute transition model, this
relative transition model may lead to transition func-
tions that assign some intermediate probability to
reaching the fictional absorbing state sfinal from a
given state s and action a. In particular,

ñs,a,sfinal
opt =

∑
i|ai=a∧ws,i<wknown

φ

(
d(si, s)

b

)
. (11)

The algorithm that results from substituting Equa-
tions 10 and 11 for Equation 6 in Lines 4 and 10 of
Algorithm 1 explores either if an action hasn’t been
attempted near a certain state or if the model predicts
that an action may transition to an unvisited region
of the state space. The introduction of approximation
for the outcomes of individual transitions also permits
more freedom in the choice of D, the states used to
represent the continuous state space.

4. Experimental Results

KBPS is designed for sample efficiency via a combina-
tion of model-based exploration, sample-based state
representation, and kernel-based generalization. This
section describes our experiments, which demonstrate
that KBPS converges more rapidly to near-optimal
policies, compared to several other recent RL algo-
rithms evaluated on some benchmark problems with
continuous state spaces.

4.1. Implementation Details

A primary practical concern for an instance-based al-
gorithm such as KBPS is computational complexity.
In fact, the casting of KBRL as a transformation into
an approximate model arose in part from caching con-
siderations for a more straightforward implementation.
Once the finite model has been built, fast tabular
methods can reference it to update the value function.
However, the GrowModel procedure, which sets the
transition probabilities to and from a new state, re-
quires running time linear in the size of D, which is
equal to the number of transitions already experienced.

Our implementation achieves a substantial reduc-
tion in the constant factor of GrowModel’s O(D)
running time by observing that the procedure only
changes the model appreciably in a local region of the
state space. It modifies the Gaussian kernel to return
0 instead of values smaller than 0.01. Thus the addi-
tion of a new transition from s only affects the model
at those states within distance b

√
− log 0.01 = 2.146b

from s, in the standard transition model. For the
relative transition model, this sphere of influence in-
creases in radius to 2.146(b + h). Our implementation

Kernel-Based Models for Reinforcement Learning

also prunes any kernel weights with normalized val-
ues smaller than 0.01 (and renormalizes the remaining
weights), bounding the number of sample transitions
(or successor states for the relative action model) used
in each approximation to 100. Note that this pruning
does not bias the approximation, since the probability
of an individual successor in the model is a function
of a sample transition’s distance from the model state,
which is independent of the actual likelihood of the
transition in the true MDP.

With these two pruning mechanisms, O(log |D|) up-
dates are possible by using a data structure such as
a k-d tree to find the 100 nearest neighbors (for each
action) of each model state. However, the following
sections describe results obtained with a simple linear-
time binning approach that searched for neighbors in
adjacent bins. Due to memory and time constraints,
our current implementation stops adding new data af-
ter sampling 10000 transitions.

4.2. Benchmark Performance

This section compares the performance of KBPS to
algorithms submitted to the RL benchmarking work-
shop held at NIPS 2005 (Dutech et al., 2005). This
event invited researchers to implement algorithms in
a common interface for online RL. Participants com-
puted their results locally, but direct comparisons are
possible due to the standardized environment code,
which presents the same sequence of initial states to
each algorithm. Sections 4.2.1 and 4.2.2 examine two
of the benchmark domains and give the KBPS param-
eters used to solve them. Section 4.2.3 evaluates the
performance of KBPS against selected algorithms.

4.2.1. Mountain Car

In the Mountain Car simulation (Sutton & Barto,
1998), an underpowered car must escape a valley (Fig-
ure 2a) by backing up the left slope to build suffi-
cient energy to reach the top of the right slope. The
agent has two state variables, horizontal position x and
horizontal velocity v. The three available actions are
reverse, neutral, and forward, which add −0.001, 0,
and 0.001 to v, respectively. In addition, gravity adds
−0.0025 cos(3x) to v at each time step. The agent re-
ceives a reward of−1 for each time step before reaching
the goal state. Episodes begin in a uniformly random
initial position x and with v = 0, and they last for
at most 300 time steps. The only domain knowledge
available is the maximum one-step reward rmax = 0
and the minimum and maximum values of each state
variable: −1.2 and 0.5 for x and −0.07 and 0.07 for v.

KBPS scaled both state variables to [0, 1]. The band-

(a) (b)

Figure 2: Two of the domains from the NIPS benchmark-
ing workshop: (a) Mountain Car and (b) Puddle World.

width parameters were b = 0.03 to generalize transi-
tions and h = 0.01 to generalize successor states. Since
Mountain Car is deterministic, the exploration thresh-
olds were nknown = 1 and wknown = 1. To compute the
value function, KBPS applied at most 1000 updates
with minimum priority 0.01 after each transition.

4.2.2. Puddle World

The Puddle World (Sutton, 1996) is a continuous grid
world with the goal in the upper-right corner and two
oval puddles (Figure 2b). The two state variables are
the x and y coordinates, and the four actions corre-
spond to the four cardinal directions. Each action
moves the agent 0.05 in the indicated direction, with
Gaussian noise added to each dimension with σ = 0.01.
The agent receives a −1 reward for each action outside
of the two puddles, which extend with radius 0.1 from
two line segments, one from (0.1, 0.75) to (0.45, 0.75)
and the other from (0.45, 0.4) to (0.45, 0.8). Being in
a puddle incurs a negative reward equal to 400 times
the distance inside the puddle. The goal region satis-
fies x + y ≥ 0.95 + 0.95.

For this domain, KBPS used bandwidth parameters
b = 0.05 and h = 0.02. Although Puddle World is
stochastic, thresholds nknown = 1 and wknown = 1 con-
tinued to suffice. KBPS used at most 1000 updates
after each transition, with minimum priority 0.01.

4.2.3. Benchmark Results

Figures 3 and 4 compare the performance of KBPS to
three selected algorithms. (Each point is the average
of fifty sequential episodes, as reported to the NIPS
workshop.) These three algorithms, implemented and
parameterized by other researchers, were among the
most competitive submitted. One is a model-based
approach applied to a fixed discretization of the state
space. This algorithm employed the same exploration
mechanism as Prioritized Sweeping, but it lacked the
instance-based representation and kernel-based gen-
eralization of KBPS. Least Squares Policy Iteration

Kernel-Based Models for Reinforcement Learning

 0

 50

 100

 150

 200

 250

 300

 0 200 400 600 800 1000

S
te

ps
 p

er
 e

pi
so

de

Episodes

Least Squares Policy Iteration
XAI

Prioritized Sweeping
Kernel-Based Prioritized Sweeping

Figure 3: Learning curves for Mountain Car

 0

 50

 100

 150

 200

 250

 300

 0 200 400 600 800 1000

S
te

ps
 p

er
 e

pi
so

de

Episodes

Least Squares Policy Iteration
XAI

Prioritized Sweeping
Kernel-Based Prioritized Sweeping

Figure 4: Learning curves for Puddle World

(Lagoudakis & Parr, 2003) is similar to KBRL in that
it uses a given sample of transitions to compute the
parameters of a function approximator that best ap-
proximates the true value function. However, LSPI re-
lies on random exploration and a fixed set of kernels to
represent the state space. XAI (eXplore and Allocate,
Incrementally) is a method that represents the value
function with a network of radial basis functions, allo-
cated online as the agent reaches unexplored regions of
the state space (Dutech et al., 2005). It thus resembles
KBPS in its instance-based use of Gaussian kernels
for approximation, but XAI is a model-free method
that uses gradient descent and Sarsa(λ) to update the
value function. None of these algorithms achieves the
same level of performance as KBPS, which combines
instance-based state representation, kernel-based gen-
eralization, and model-based exploration.

For the purposes of comparison, we also test an im-
plementation of KBRL without model-based explo-
ration. A simple random exploration mechanism
adapts KBRL to the online case. At each time step,

KBRL executes a random action with probability
0.95n, where n is the number of completed episodes.
After each episode, KBRL recomputes the value func-
tion using all the accumulated transition data. How-
ever, this algorithm does not perform very well in
these benchmark domains: almost every episode times
out, until the sample size becomes too large. The
agent stumbles upon a goal state very infrequently, and
KBRL’s local generalization approach does not allow it
to take full advantage of these occasions. Random ex-
ploration thus very poorly approximates the assump-
tion of uniform sampling over the state space, which
underlies KBRL’s convergence guarantees.

4.3. Ablation Study

KBPS benefits from at least two algorithmic contri-
butions: the incorporation of model-based reasoning
into KBRL to create an online algorithm (Section 3.1)
and the relative transition model (Section 3.2), which
removes a source of bias in estimating the model. To
measure the magnitude of each benefit, we compare
KBPS with standard Prioritized Sweeping and with a
version of KBPS lacking the relative transition model.
Figure 5 shows the performance of each algorithm, av-
eraged over 50 independent trials in the Mountain Car
domain. Our implementation of Prioritized Sweeping
uses the same parameters as the finite model-based
algorithm submitted to the NIPS workshop: it dis-
cretizes each state dimension into 100 intervals and
uses nknown = 1. We use the same parameters de-
scribed in Section 4.2.1 for KBPS.

The more straightforward combination of KBRL and
Prioritized Sweeping converges much more quickly
than discrete Prioritized Sweeping, but at the ex-
pense of converging to suboptimal policies. Further
experimentation has shown that decreasing the band-
width parameter improves the average quality of the
final policy but quickly increases the sample complex-
ity of the algorithm. Adding the relative transition
model preserves fast convergence while achieving near-
optimal policies in this domain.

5. Discussion and Related Work

KBPS learns efficiently in continuous state spaces by
combining the advantages of robust function approxi-
mation and model-based exploration. This algorithm
is not the first to learn models for continuous RL prob-
lems, but to our knowledge prior work relies on the as-
sumption of deterministic system dynamics. With this
assumption, the successor state becomes a function of
the initial state and action, and standard supervised
learning techniques may be used to learn the transition

Kernel-Based Models for Reinforcement Learning

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500

S
te

ps
 p

er
 e

pi
so

de

Episodes

Prioritized Sweeping
KBPS without relative transitions

KBPS

Figure 5: Learning curves for Mountain Car. Each curve
is the average of 50 independent trials.

function. One such method closely related to KBRL
is locally weighted regression (Atkeson et al., 1997),
which also uses a kernel to weight previous transitions
to estimate the effect of an action at a given state.
However, this approach uses the weighted data as in-
puts to a regression problem, yielding a single average
successor. Regression is suitable when nondetermin-
ism only results from noise, but in the general case it
will predict only one of possibly many outcomes. In
many cases, the average outcome may also be an un-
likely or impossible one.

One noteworthy limitation of KBPS is its scalability.
As an instance-based algorithm, its time and space
complexity grow with the amount of data it collects.
Our current implementation simply stops adding data
after reaching a fixed threshold, but a more principled
approach would strive to keep the most useful samples
without introducing significant bias. The relative tran-
sition model may help address this problem, since it
decouples the finite state space D from the states that
appear in the transition data. Hence, KBPS could stop
adding states to D if the model grows too large to up-
date the value function efficiently, and it can also stop
adding transitions to the pseudodata if the dataset
grows too large to update the model efficiently.

KBPS is also vulnerable to the curse of dimensional-
ity. As the dimensionality grows, exponentially more
data is required to explore each neighborhood of the
state space. One solution is to select or to learn more
sophisticated kernels that permit generalization of a
stored transition beyond its local neighborhood. For
example, in real-world domains, many actions are in-
dependent of some subset of the state dimensions, and
the approximation of those actions can thus generalize
freely over those dimensions. The relative transition

model may also play an important role here, since the
algorithm must learn that an action leaves an indepen-
dent dimension unchanged, instead of changing it to a
previously observed value.

6. Conclusion

We showed how Kernel-Based Reinforcement Learn-
ing, an offline function-approximation method proven
to converge to the true value function, is equivalent to
planning with a finite model approximating the con-
tinuous domain. This equivalence enables the synthe-
sis of KBRL and model-based exploration. To achieve
a practical algorithm, we proposed a modification to
the KBRL transition model that eliminates an impor-
tant source of bias for many real-world applications.
Finally, we demonstrated the efficiency of the result-
ing algorithm, Kernel-Based Prioritized Sweeping, on
standard benchmark domains.

References

Atkeson, C. G., Moore, A. W., & Schaal, S. (1997). Lo-
cally weighted learning for control. Artificial Intelligence
Review, 11, 75–113.

Dutech, A., Edmunds, T., Kok, J., Lagoudakis,
M., Littman, M., Riedmiller, M., Russell, B.,
Scherrer, B., Sutton, R., Timmer, S., Vlassis,
N., White, A., & Whiteson, S. (2005). Rein-
forcement learning benchmarks and bake-offs II.
http://www.cs.rutgers.edu/˜mlittman/topics/nips05-
mdp/bakeoffs05.pdf.

Kearns, M., & Singh, S. (1998). Near-optimal reinforce-
ment learning in polynomial time. Proceedings of the
Fifteenth International Conference on Machine Learn-
ing (pp. 260–268).

Lagoudakis, M. G., & Parr, R. (2003). Least-squares pol-
icy iteration. Journal of Machine Learning Research, 4,
1107–1149.

Moore, A. W., & Atkeson, C. G. (1993). Prioritized sweep-
ing: Reinforcement learning with less data and less real
time. Machine Learning, 13, 103–130.

Ormnoneit, D., & Sen, Ś. (2002). Kernel-based reinforce-
ment learning. Machine Learning, 49, 161–178.

Puterman, M. L. (1994). Markov decision processes: Dis-
crete stochastic dynamic programming. John Wiley &
Sons, Inc.

Sutton, R. S. (1996). Generalization in reinforcement learn-
ing: Successful examples using sparse coarse coding. Ad-
vances in Neural Information Processing Systems 8.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learn-
ing: An introduction. Cambridge, MA: MIT Press.

Watkins (1989). Learning from delayed rewards. Doctoral
dissertation, University of Cambridge, England.

