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Abstract

Policy gradient methods are reinforcement
learning algorithms that adapt a parameter-
ized policy by following a performance gradi-
ent estimate. Many conventional policy gra-
dient methods use Monte-Carlo techniques
to estimate this gradient. The policy is im-
proved by adjusting the parameters in the di-
rection of the gradient estimate. Since Monte
Carlo methods tend to have high variance, a
large number of samples is required to attain
accurate estimates, resulting in slow conver-
gence. In this paper, we propose a Bayesian
framework for policy gradient, by modeling
the policy gradient as a Gaussian process.
This reduces the number of samples needed
to obtain accurate gradient estimates. More-
over, estimates of the natural gradient and
the gradient covariance are provided at little
extra cost. We perform experimental com-
parisons of the suggested algorithm with clas-
sic Monte-Carlo based algorithms on two sim-
ple problem domains.

1. Introduction

Policy Gradient (PG) methods1 are Reinforcement
Learning (RL) algorithms that maintain a parame-
terized action-selection policy and update the pol-
icy parameters by moving them in the direction of
an estimate of the gradient of a performance mea-
sure. Early examples of PG algorithms are the class
of REINFORCE algorithms of Williams (1992) which
are suitable for solving problems in which the goal

1The term has been coined in Sutton et al. (2000), but
here we use it more liberally to refer to a whole class of
reinforcement learning methods.

Appearing in Kernel machines for reinforcement learning
workshop, Pittsburgh, PA, 2006. Copyright 2006 by the
author(s)/owner(s).

is to optimize the average reward. Subsequent work
(e.g., Kimura et al., 1995; Marbach, 1998; Baxter
& Bartlett, 2001) extended these algorithms to the
cases of infinite-horizon MDPs and partially observ-
able MDPs (POMDPs), and provided much needed
theoretical analysis. However, both the theoretical
analysis and empirical evaluations have highlighted a
major shortcoming of these algorithms, namely, the
high variance of the gradient estimates. This high vari-
ance may be traced to the fact that in most interest-
ing cases, the time-average of the observed rewards is
a high-variance (although unbiased) estimator of the
true average reward, resulting in the extreme slowness
and sample-inefficiency of these algorithms.

One solution proposed for this problem was to use a
small (i.e., smaller than 1) “discount factor” in these
algorithms (Marbach, 1998; Baxter & Bartlett, 2001),
however, this creates another problem by introducing
bias into the gradient estimates. Another solution,
which does not involve biasing the gradient estimate,
is to subtract a “reinforcement baseline” from the aver-
age reward estimate in the updates of PG algorithms
(e.g., Williams, 1992; Marbach, 1998; Sutton et al.,
2000). In Williams (1992) an average reward baseline
was used, and in Sutton et al. (2000) it was conjec-
tured that an approximate value function would be
a good choice for a state-dependent baseline. How-
ever, in Weaver and Tao (2001) and Greensmith et al.
(2004), it was shown, perhaps surprisingly, that the
mean reward is in general not the optimal constant
baseline, and that the true value function is generally
not the optimal state-dependent baseline.

Another approach for speeding-up policy gradient al-
gorithms was recently proposed in Kakade (2002)
and refined and extended in Bagnell and Schneider
(2003) and Peters et al. (2003). The idea is to re-
place the policy-gradient estimate with an estimate
of the so-called natural policy-gradient. This is mo-
tivated by the requirement that the policy updates
should be invariant to bijective transformations of the
parametrization. Put more simply, a change in the
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way the policy is parametrized should not influence
the result of the policy update. In terms of the pol-
icy update rule, the move to a natural-gradient rule
amounts to linearly transforming the gradient using
the inverse Fisher information matrix of the policy.
In empirical evaluations, natural-PG has been shown
to significantly outperform conventional PG (Kakade,
2002; Bagnell & Schneider, 2003).

However, both conventional and natural policy gra-
dient methods rely on Monte-Carlo (MC) techniques
to estimate the gradient of the performance measure.
MC estimation is a purely frequentist procedure, and
as such violates the likelihood principle2 (Berger &
Wolpert, 1984). Moreover, although MC estimates are
unbiased, they make inefficient use of data, and there-
fore tend to produce estimates possessing high vari-
ance, or alternatively, require excessive sample sizes
(see O’Hagan, 1987 for a discussion). In the case of
policy-gradient estimation this is exacerbated by the
fact that consistent policy improvement requires mul-
tiple gradient estimations.

In O’Hagan (1991) a Bayesian alternative to MC es-
timation was proposed.3 The idea is to model inte-
grals of the form

∫
f(x)p(x)dx as Gaussian Processes

(GPs). This is done by treating the first term f in
the integrand as a random function, the randomness
of which reflects our subjective uncertainty concern-
ing its true identity. This allows us to incorporate our
prior knowledge on f into its prior distribution. Ob-
serving (possibly noisy) samples of f at a set of points
(x1, x2, . . . , xn) allows us to employ the Bayes’ rule to
compute a posterior distribution of f , conditioned on
these samples. This, in turn, induces a posterior dis-
tribution over the values of the integral.

In this paper, we propose a Bayesian framework for
policy gradient, by modeling the gradient as a Gaus-
sian process. This reduces the number of samples
needed to obtain accurate gradient estimates. More-
over, estimates of the natural gradient and the gradi-
ent covariance are provided at little extra cost. Addi-
tional gains may be attained by learning a transition
model of the environment, allowing knowledge transfer
between policies.

2The likelihood principle states that in a parametric sta-
tistical model, all the information about a data sample that
is required for inferring the model parameters is contained
in the likelihood function of that sample.

3O’Hagan (1991) mentions that this approach may be
traced back even as far back as Poincaré (1896).

2. Reinforcement Learning and Policy

Gradient Methods

Reinforcement Learning (RL) (Bertsekas & Tsitsiklis,
1996; Sutton & Barto, 1998) is a class of learning prob-

lems in which an agent (or controller) interacts with
an unfamiliar, dynamic and stochastic environment (or
plant), and whose goal is to maximize some measure of
its long-term performance. This interaction is conven-
tionally modeled as a Markov decision process (MDP),
or, if the environmental state is not always completely
observable, as a partially observable MDP (POMDP)
(Puterman, 1994). In this work we restrict our atten-
tion to the discrete-time MDP setting.

Let P(X ), P(A), and P(R) be the set of probability
distributions on (Borel) subsets of X , A, and R re-
spectively. A MDP is a tuple (X ,A, q, P, P0) where X
and A are the state and action spaces, respectively;
q(·|a, x) ∈ P(R) is the probability distribution over
rewards received when action a is taken at state x;
P (·|a, x) ∈ P(X ) is the probability distribution over
next states, conditioned on action a being taken at
state x (we assume that P and q are stationary); and
P0 ∈ P(X ) is the probability distribution according
to which the initial state is selected. We denote the
random variable distributed according to q(·|a, x) as
r(x, a).

In addition, we need to specify the rule according to
which the agent selects actions at each possible state.
We assume that this rule does not depend explicitly
on time. A stationary policy µ(·|x) ∈ P(A) is a prob-
ability distribution over actions, conditioned on the
current state. Given a fixed policy µ, the sequence of
state-action pairs (xt, at) for t = 0, 1, 2, . . . is gener-
ated by a Markov chain induced by that policy. The
corresponding transition probability from (xt, at) to
(xt+1, at+1) is µ(at+1|xt+1)P (xt+1|at, xt). We generi-
cally denote by ξ = (x0, a0, x1, a1, . . . , xT−1, aT−1, xT )
a path generated by this Markov chain. The probabil-
ity of such a path is given by

Pr(ξ|µ) = P0(x0)

T−1∏

t=0

µ(at|xt)P (xt+1|xt, at) (1)

We denote by R(ξ) the (possibly discounted) cumu-

lative return of the path ξ. R(ξ) =
∑T−1

t=0 γtr(xt, at)
(γ ∈ [0, 1] is a discount factor) is a random variable
both because ξ is a random variable, and because, even
for a given path ξ, each of the rewards collected in it
may be stochastic. The expected value of R(ξ) for a
given path ξ is denoted by R̄(ξ). Finally, let us define
the expected return

η(µ) = E(R(ξ)) =

∫
R̄(ξ) Pr(ξ|µ)dξ (2)



Bayesian Policy Gradient

Gradient-based approaches to policy search in RL have
recently received much attention as a means to side-
track problems of partial observability and of policy
oscillations and even divergence encountered in value-
function based methods (see Bertsekas & Tsitsiklis,
1996, Sections 6.4.2 and 6.5.3). In policy gradient
(PG) methods, we define a class of smoothly param-
eterized stochastic policies {µ(·|x;θ), x ∈ X ,θ ∈ Θ},
estimate the gradient of the expected return with re-
spect to the policy parameters θ from the observed
system trajectories, and then improve the policy by ad-
justing the parameters in the direction of the gradient
(Williams, 1992; Marbach, 1998; Baxter & Bartlett,
2001). The score function or likelihood ratio method
has become the most prominent technique for gradi-
ent estimation via simulation. It has been first pro-
posed in the sixties (Aleksandrov et al., 1968; Rubin-
stein, 1969) for computing performance gradients in
i.i.d. (independently and identically distributed) pro-
cesses, and was then extended to regenerative processes
including MDPs by Glynn (1986; 1990), Reiman and
Weiss (1986; 1989), Glynn and L’Ecuyer (1995), and
to episodic MDPs by Williams (1992). This method
estimates the gradient of the expected return

η(θ) = η(µ(·|·;θ)) =

∫
R̄(ξ) Pr(ξ;θ)dξ, (3)

with respect to the policy parameters θ. For that, we
use the following equation:4

∇η(θ) =

∫
R̄(ξ)

∇Pr(ξ;θ)

Pr(ξ;θ)
Pr(ξ;θ)dξ, (4)

where Pr(ξ;θ) = Pr(ξ|µ(·|·;θ)), defined in Equation 1.

In Equation 4, the quantity ∇Pr(ξ;θ)
Pr(ξ;θ) = ∇ log Pr(ξ;θ)

is called the score function or likelihood ratio. Since
the initial state distribution P0 and the transition dis-
tribution P are independent of the policy parameters
θ, we can write the likelihood ratio for a path ξ using
Equation 1 as

∇Pr(ξ;θ)

Pr(ξ;θ)
=

T−1∑

t=0

∇µ(at|xt;θ)

µ(at|xt;θ)
=

T−1∑

t=0

∇ log µ(at|xt;θ)

Previous work on policy gradient methods used clas-
sical Monte-Carlo to estimate the gradient in Equa-
tion 4. These methods generate i.i.d. sample paths
ξ1, . . . , ξM according to Pr(ξ;θ), and estimate the gra-

4Throughout the paper, we use the notation ∇ to denote
∇θ – the gradient with respect to the policy parameters θ.

dient ∇η(θ) using the following MC estimator:

∇̂η(θ) =
1

M

M∑

i=1

R(ξi)∇ log Pr(ξi;θ) (5)

=
1

M

M∑

i=1

R(ξi)

Ti−1∑

t=0

∇ log µ(at,i|xt,i;θ)

This is an unbiased estimate and therefore, by the law
of large numbers, ∇̂η(θ) → ∇η(θ) with probability
one.

3. Bayesian Quadrature

Bayesian quadrature (BQ) (O’Hagan, 1991) is, as its
name suggests, a Bayesian method for evaluating an
integral using samples of its integrand. We consider
the problem of evaluating the integral

ρ =

∫
f(x)p(x)dx. (6)

If p(x) is a probability density function, this becomes
the problem of evaluating the expected value of f(x).
A well known frequentist approach to evaluating such
expectations is the Monte-Carlo method. For MC es-
timation of such expectations, it is typically required
that samples (x1, x2, . . . , xM ) are drawn from p(x).5

The integral in Equation 6 is then estimated as

ρ̂MC =
1

M

M∑

i=1

f(xi). (7)

It is easy to show that ρ̂MC is an unbiased estimate
of ρ, with variance that diminishes to zero as M →
∞. However, as O’Hagan (1987) points out, the MC
estimation is fundamentally unsound, as it violates the
likelihood principle, and moreover, does not make full
use of the data at hand.

The alternative proposed in O’Hagan (1991) is based
on the following reasoning: In the Bayesian approach,
f(·) is random simply because it is numerically un-
known. We are therefore uncertain about the value
of f(x) until we actually evaluate it. In fact, even
then, our uncertainty is not always completely re-
moved, since measured samples of f(x) may be cor-
rupted by noise. Modeling f as a GP means that our
uncertainty is completely accounted for by specifying
a Normal prior distribution over functions. This prior
distribution is specified by its mean and covariance,
and is denoted by f(·) ∼ N {f0(·), k(·, ·)}. This is

5If samples can only be drawn from some other distri-
bution, importance sampling variants of MC can be used.



Bayesian Policy Gradient

shorthand for the statement that f is a GP with prior
mean and covariance

E(f(x)) = f0(x) , Cov(f(x), f(x′)) = k(x, x′), (8)

respectively. The choice of kernel function k allows
us to incorporate prior knowledge on the smoothness
properties of the integrand into the estimation proce-
dure. When we are provided with a set of (possibly
noisy) samples DM = {(xi, yi)}M

i=1, where yi is a sam-
ple of f(xi), we apply the Bayes’ rule to condition the
prior on these sampled values. The result is a Normal
posterior distribution of f |DM . The expressions for
the posterior mean and covariance are standard:

E(f(x)|DM ) = f0(x) + kM (x)>CM (yM − f0), (9)

Cov(f(x), f(x′)|DM ) = k(x, x′) − kM (x)>CMkM (x′).

Here and in the sequel, we make use of the definitions:

f0 = (f0(x1), . . . , f0(xM ))>,

yM = (y1, . . . , yM )>,

kM (x) = (k(x1, x), . . . , k(xM , x))>,

CM = (KM + ΣM )
−1

,

[KM ]i,j = k(xi, xj),

and [ΣM ]i,j is the measurement noise covariance be-
tween the ith and jth samples. Typically, it is as-
sumed that the measurement noise is i.i.d., in which
case ΣM = σ2I, where σ2 is the noise variance and
I is the (appropriately sized - here M × M) identity
matrix.

Since integration is a linear operation, the poste-
rior distribution of the integral in Equation 6 is also
Gaussian, and the posterior moments are given by
(O’Hagan, 1991)

E(ρ|DM ) =

∫
E(f(x)|DM )p(x)dx, (10)

Var(ρ|DM ) =

∫∫
Cov(f(x), f(x′)|DM )p(x)p(x′)dxdx′.

Substituting Equation 9 into Equation 10, we get

E(ρ|DM ) = ρ0 + z>
MCM (yM − f0),

Var(ρ|DM ) = z0 − z>
MCMzM , (11)

where we made use of the definitions:

ρ0 =

∫
f0(x)p(x)dx

zM =

∫
kM (x)p(x)dx

z0 =

∫∫
k(x, x′)p(x)p(x′)dxdx′. (12)

Note that ρ0 and z0 are the prior mean and variance
of ρ, respectively.

In Rasmussen and Ghahramani (2003) it has been ex-
perimentally demonstrated how this approach, when
applied to the evaluation of an expectation, can out-
perform MC estimation by orders of magnitude, in
terms of the mean-squared error.

In order to prevent the problem from “degenerating
into infinite regress”, as phrased by O’Hagan (1991),
we should choose the functions p, k, and f0 so as to
allow us to solve the integrals in Equation 12 ana-
lytically. For instance, O’Hagan (1991) provides the
analysis required for the case where the integrands in
Equation 12 are products of multivariate Gaussians
and polynomials, referred to as Bayes-Hermite quadra-
ture. One of the contributions of the present paper
is in providing analogous analysis for kernel functions
that are based on the Fisher kernel (Jaakkola & Haus-
sler, 1998; Shawe-Taylor & Cristianini, 2004).

It is important to note that in the MC estimation, sam-
ples must be drawn from the distribution p(x), whereas
in the Bayesian approach, samples may be drawn from
arbitrary distributions. This affords us with flexibility
in the choice of sample points, allowing us, for instance
to actively design the samples (x1, x2, . . . , xM ) so as to
maximize information gain.

4. Bayesian Policy Gradient

In this section, we use the Bayesian quadrature
method to estimate the gradient of the expected return
with respect to the policy parameters, and propose a
new Bayesian policy gradient (BPG) algorithm.

In the frequentist approach to policy gradient, η(θ)
from Equation 3 was our performance measure. In or-
der to serve as a useful performance measure, it has
to be a deterministic function of the policy parame-
ters θ. This is achieved by averaging the cumulative
return R(ξ) over all possible paths ξ and all possible
returns accumulated in each path. In the Bayesian
approach we have an additional source of randomness,
which is our subjective Bayesian uncertainty concern-
ing the process generating the cumulative return. Let
us denote

ηB(θ) =

∫
R(ξ) Pr(ξ;θ)dξ. (13)

ηB(θ) is a random variable both because of the noise
in R(ξ) and the Bayesian uncertainty. Our deter-
ministic Bayesian performance measure is therefore
E(ηB(θ)|DM ), and a measure of the reliability of this
measure is Var(ηB(θ)|DM ).
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However, in this paper we are not interested in eval-
uating the posterior distribution of ηB(θ).6 Instead,
we are interested in optimizing performance, which is
why we would rather evaluate the posterior distribu-
tion of the gradient of ηB(θ) with respect to the policy
parameters θ:7

∇ηB(θ) =

∫
R(ξ)

∇Pr(ξ;θ)

Pr(ξ;θ)
Pr(ξ;θ)dξ (14)

In BPG, we cast the problem of estimating the gradi-
ent of the expected return (Equation 14) in the form
of Equation 6. We therefore need to partition the in-
tegrand into two parts f(ξ;θ) and p(ξ;θ). We will
place the GP prior over f and assume that p is known
exactly. Because in general, R(ξ) can not be known ex-
actly, even for a given ξ (due to the stochasticity of the
rewards), R(ξ) should always belong to that part of the
model upon which we place the GP prior (f(ξ;θ)). In-
terestingly, in certain cases it is sufficient to know the
Fisher information matrix corresponding to Pr(ξ;θ),
rather than having exact knowledge of Pr(ξ;θ) itself.
We make use of this fact in the sequel. We will then
proceed by calculating the posterior moments of the
gradient ∇ηB(θ) conditioned on the observed data.
We investigate two different ways of partitioning the
integrand in Equation 14 into a GP f and a function
p below.

4.1. Model 1

In the first model, we define p and f as

p(ξ) = Pr(ξ;θ)

f(ξ;θ) = R(ξ)
∇p(ξ;θ)

p(ξ;θ)
= R(ξ)∇ log p(ξ;θ)

We place a GP prior over (f(ξi;θ))M
i=1 which induces a

GP prior over the corresponding noisy measurements
(yi)

M
i=1

F M = (f(ξ1;θ), . . . ,f(ξM ;θ)) ∼ N (0,KM ),

Y M = (y1, . . . ,yM ) ∼ N (0,KM + σ2I),

where KM is the kernel matrix. If n is the number
of policy parameters, then, in this model, f(ξ;θ) is
an n × 1 vector. Therefore, the i, jth element of the
kernel matrix, [KM ]i,j is in itself an n×n matrix which
represents the covariance between the components of
f(ξi;θ) and f(ξj ;θ). For ease of exposition we assume

6Although this is an interesting question in its own
right.

7Note that, whereas ∇E(ηB(θ)) = E(∇ηB(θ)), the
same is not true for the variance. That is, ∇Var(ηB(θ)) 6=
Cov(∇ηB(θ)).

[KM ]i,j = k(ξi, ξj)I, which allows us to treat [KM ]i,j
as a scalar.

In this model, the posterior mean and covariance of
the gradient ∇ηB(θ) are

E(∇ηB(θ)|DM ) = Y >
MCMzM ,

Cov(∇ηB(θ)|DM ) = (z0 − z>
MCMzM )I,

respectively, where

zM =

∫
kM (ξ) Pr(ξ;θ)dξ,

z0 =

∫∫
k(ξ, ξ′) Pr(ξ;θ) Pr(ξ′;θ)dξdξ′.

A choice of kernel that allows us to derive closed form
expressions for zM and z0 is the quadratic Fisher ker-
nel (Jaakkola & Haussler, 1998):

k(ξi, ξj) =
(
1 + u(ξi)

>G−1u(ξj)
)2

, (15)

where u(ξ) = ∇ log Pr(ξ;θ) is the score function of the
path ξ, and G is the Fisher information matrix defined
as

G = E(u(ξ)u(ξ)>) (16)

Using this kernel, it is possible (albeit tedious) to show
that (zM )i = 1 + u(ξi)

>G−1u(ξi) and z0 = 1 + n.

4.2. Model 2

In our second model, we define p(ξ) = ∇Pr(ξ;θ) and
f(ξ) = R̄(ξ). We place a GP prior over (f(ξi;θ))M

i=1

which induces a GP prior over the corresponding noisy
measurements (yi)

M
i=1, where yi = R(ξi) = R̄(ξi) +(

R(ξi) − R̄(ξi)
)
. In this model, the posterior mean

and variance of the gradient ∇ηB(θ) are

E(∇ηB(θ)|DM ) = ZMCMyM ,

Cov(∇ηB(θ)|DM ) = Z0 − ZMCMZ>
M ,

respectively, where

ZM =

∫
kM (ξ)>∇Pr(ξ;θ)dξ,

Z0 =

∫∫
k(ξ, ξ′)∇Pr(ξ;θ)∇Pr(ξ′;θ)>dξdξ′.

A choice of kernel that allows us to derive closed
form expressions for ZM and Z0 is the Fisher kernel
(Jaakkola & Haussler, 1998):

k(ξi, ξj) = u(ξi)
>G−1u(ξj) (17)

Using this kernel, ZM = UM and Z0 = G−UMCMU>

M ,
where UM =

ˆ

u(ξ1) , u(ξ2) , . . . , u(ξM )
˜

.
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4.3. A Bayesian Policy Gradient Evaluation
Algorithm

We can now use Model 1 and Model 2 to define al-
gorithms for evaluating the gradient of the expected
return with respect to the policy parameters. Pseudo-
code for these algorithms is shown in Algorithm 1. The
generic algorithm (for either model) takes a set of pol-
icy parameters θ and a sample size M as input, and
returns an estimate of the gradient of the expected re-
turn with respect to the policy parameters ∇ηB(θ).
This algorithm generates M sample paths to evalu-
ate the gradient. For each path ξi, the algorithm first
computes its score function u(ξi) (Line 6). The score
function is needed for computing the kernel function
k, the measurement y in Model 1, and z or Z. The
algorithm then computes the return R and the mea-
sured y for the observed path ξ (Lines 7 and 8), and
expands the kernel matrix K using

Ki =

[
Ki−1 ki−1(ξi)

ki−1(ξi)
> k(ξi, ξi)

]
(18)

Finally, the algorithm adds the measurement error
Σ = σ2I to the covariance matrix K (Line 12), and
computes the posterior mean for the gradient (Line
13). Z(:, i) on Line 10 represents the ith column of
matrix Z.

The kernel functions used in Model 1 and Model 2
(Equations 15 and 17) are both based on the Fisher
kernel. Computing the Fisher kernel requires calculat-
ing the Fisher information matrix G (Equation 16).
Therefore, we need to calculate the Fisher information
matrix every time we update the policy parameters.
In Algorithm 1 we assume that the Fisher information
matrix is available, and leave its estimation for future
work.

Nonetheless, let us briefly outline three possible meth-
ods for estimating the Fisher information matrix in an
online manner:

1) MC Estimation: At each step j, our BPG al-
gorithm generates M sample paths using the current
policy parameters θj in order to estimate the gradient
∇ηB(θj). We can use these generated sample paths
to estimate the Fisher information matrix G(θj) in a
MC fashion as

ĜMC(θj) =

1
∑M

i=1 Ti

M∑

i=1

Ti−1∑

t=0

∇ log µ(at,i|xt,i;θj)∇ log µ(at,i|xt,i;θj)
>.

ĜMC is an unbiased frequentist estimator of G.

2) Bayesian Estimation: The Fisher information

Algorithm 1 A Bayesian Policy Gradient Evaluation
Algorithm

1: BPG Eval(θ,M)
• sample size M > 0
• a set of policy parameters θ ∈ R

n

2: Set G = G(θ) , D0 = ∅
3: for i = 1 to M do
4: Sample a path ξi using the policy µ(θ)
5: Di = Di−1

⋃
/*ξi*/

6: Compute u(ξi) =
∑Ti−1

t=0 ∇ log µ(at,i|st,i;θ)

7: Compute R(ξi) =
∑Ti−1

t=0 r(st,i, at,i)
8: Compute

y(ξi) = R(ξi)u(ξi) (Model 1)
or

y(ξi) = R(ξi) (Model 2)
9: Compute Ki using Ki−1 and ξi

10: Compute
zi = 1 + u(ξi)

>G−1u(ξi) (Model 1)
or

Z(:, i) = u(ξi) (Model 2)
11: end for
12: Compute C = (K + σ2I)−1

13: Compute the posterior mean
E(∇ηB(θ)|DM ) = Y >Cz (Model 1)

or
E(∇ηB(θ)|DM ) = ZCy (Model 2)

14: return E(∇ηB(θ)|DM )

matrix is the result of an expectation integral (Equa-
tion 16). Therefore, it can be estimated using the
Bayesian quadrature method in the same way that we
estimate the gradient in this paper. We place a prior
on the integrand in Equation 16, observe sample paths,
and compute the posterior of the integrand which in
turn implies a distribution over Fisher information ma-
trices.

3) Model-Based Policy Gradient: The Fisher in-
formation matrix depends on the probability distribu-
tion over paths. This distribution is a product of two
factors, one corresponding to the current policy, and
the other corresponding to the MDP dynamics P (see
Equation 1). Thus, if the MDP dynamics are known,
the Fisher information matrix can be evaluated offline.
We can model the MDP dynamics using some param-
eterized model, and estimate the model parameters
using maximum likelihood or Bayesian methods. This
would be a model-based approach to policy gradient,
which might be an interesting research direction, since
it would allow us to transfer information between dif-
ferent policies. Current policy gradient algorithms, in-
cluding the algorithms described in this paper, are ex-
tremely wasteful of training data, since they do not
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have any disciplined way to use data collected for pre-
vious policy updates in computing the update of the
current policy.

4.4. A Bayesian Policy Gradient Algorithm

Pseudo-code for the Bayesian policy gradient (BPG)
algorithm is shown in Algorithm 2. This algorithm
starts with an initial vector of policy parameters θ0

and updates the parameters in the direction of the
estimated gradient of the expected return. This is re-
peated N times. A more reasonable way to terminate
the algorithm is to stop when the estimated gradient
is nearly zero. For each parameter update, this al-
gorithm calls the Bayesian policy gradient evaluation
algorithm BPG Eval described in Algorithm 1.

Algorithm 2 A Bayesian Policy Gradient Algorithm

1: BPG(α,N,M)
• learning rate αj , j = 0, . . . , N − 1
• number of policy updates N > 0
• sample size for gradient evaluation M > 0

2: Set θ0

3: for j = 0 to N − 1 do
4: ∆θj =BPG Eval(θj ,M)
5: θj+1 = θj + αj∆θj (Regular Gradient)

or
θj+1 = θj + αjG

−1∆θj (Natural Gradient)
6: end for
7: return θN

4.5. Online Sparsification

In order to make Algorithm 1 more practical, we need
to reduce the computational burden associated with
the computation of the gradient. To do so, we incor-
porate online sparsification into the algorithm. This
allows us to significantly reduce the time and space
complexity of the algorithm, and ensures that matrix
inversions are numerically stable.

We use the online sparsification method from Engel
et al. (2002) (see also Csató & Opper, 2002) to selec-
tively add a new observed path to the set of dictio-

nary paths D̃M . We only add the new path ξi to D̃,

if δi = k(ξi, ξi) − k̃i−1(ξi)
>K̃

−1

i−1k̃i−1(ξi) > λ. If the

new path is added to D̃ the dictionary kernel matrix
K̃ is expanded as shown in Equation 18. λ is a posi-
tive threshold parameter that determines the level of
accuracy of the approximation as well as the level of
sparsity attained.

Using this sparsification method, the posterior mean
of the gradient is computed for Model 1 and Model 2

as

E(∇ηB(θ)|DM ) = Y >
MAM (A>

MAM )−1C̃M z̃M ,

E(∇ηB(θ)|DM ) = Z̃M C̃M (A>
MAM )−1A>

MyM ,

respectively. C̃M =
(
K̃M + σ2I

)−1

is an m × m

matrix, where m ≤ M is the cardinality of D̃M .
The matrix AM is an M × m matrix whose ith row
is [AM ]i,|D̃i|

= 1 and [AM ]i,j = 0 ; ∀j 6= |D̃i|,
if we add the sample path ξi to the set of sample

paths, and is k̃i−1(ξi)
>K̃

−1

i−1 followed by zeros oth-

erwise. Finally, (z̃M )i = 1 + u(ξi)
>G−1u(ξi) and

Z̃M = [u(ξ1) , u(ξ2) , . . . , u(ξM )] with ξi ∈ D̃M .

5. Experimental Results

In this section, we compare the Bayesian quadrature
(BQ) and the simple MC gradient estimations using
a simple bandit problem as well as a continuous state
and action linear quadratic regulator (LQR). We also
evaluate the performance of the Bayesian policy gradi-
ent (BPG) algorithm described in Algorithm 2 on the
LQR, and compare it with a MC-based policy gradient
(MCPG) algorithm.

5.1. A Simple Bandit Problem

The goal of this simple example is to compare the BQ
and MC estimates of the gradient (for a fixed set of
policy parameters) using the same samples. Our sim-
ple bandit problem has one state and a ∈ A = R.
Thus, each path consists of one action. The policy is
Gaussian with mean zero and variance one. As a re-
sult the probability of a path is also Gaussian with the
same mean and variance: Pr(ξ) = µ(a|x) ∼ N (0, 1).
The score function of the path ξ = a and the Fisher
information matrix G are computed as follows:

∇ log Pr(ξ) =

(
a

a2 − 1

)
; G =

[
1 0
0 2

]

Table 1 shows the exact gradient of the expected re-
turn and its MC and BQ estimates (using 10 and 100
samples) for two versions of the simple bandit prob-
lem corresponding to two different reward functions
r(a) = a and r(a) = a2. The average over 104 runs of
the MC and BQ estimates and their standard devia-
tions are reported in Table 1. The gradient is analyt-
ically computable in this problem and is reported as
“Exact” in Table 1 for comparison purposes.

As shown in Table 1, the BQ estimate has much lower
standard deviation than the MC estimate for both
small and large sample sizes. The BQ estimate has
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r(a) = a r(a) = a2

Exact

„

1
0

« „

0
2

«

MC (10)

„

0.9950 ± 0.438
−0.0011 ± 0.977

« „

0.0136 ± 1.246
2.0336 ± 2.831

«

BQ (10)

„

0.9856 ± 0.050
0.0006 ± 0.060

« „

0.0010 ± 0.082
1.9250 ± 0.226

«

MC (100)

„

1.0004 ± 0.140
0.0040 ± 0.317

« „

0.0051 ± 0.390
1.9869 ± 0.857

«

BQ (100)

„

1.0000 ± 0.000001
0.0000 ± 0.000004

« „

0.0000 ± 0.000003
2.0000 ± 0.000011

«

Table 1. The true gradient of the expected return and its
MC and BQ estimates for two versions of the simple bandit
problem corresponding to two different reward functions.

also better mean than the MC estimate for the large
sample size (M = 100), and almost the same mean for
the small sample size (M = 10).

5.2. Linear Quadratic Regulator

In this section, we consider the following linear system:

System:
Initial State: x0 ∼ N (0.3, 0.001)
State Transition: xt+1 = xt+at+nx ; nx ∼ N (0, 0.01)
Reward: rt = x2

t + 0.1a2
t

Policy:
Actions: at ∼ µ(at|xt;θ) = N (cxt, σ

2)
Parameters: θ = (c , σ)>

The goal here is to maximize the expected return over
20 steps. Thus, it is an episodic problem with paths
of length 20.8 We run two sets of experiments on this
system. We first fix the set of policy parameters and
compare the BQ and MC estimates of the gradient
of the expected return using the same samples. We
then proceed to solving the complete policy gradient
problem, and compare the performance of the BPG
algorithm (with both regular and natural gradients)
with a MC-based policy gradient (MCPG) algorithm.

5.2.1. Gradient Estimation

In this section, we compare the BQ and MC estimates
of the gradient of the expected return for the policy
represented by parameters c = −0.2 and σ = 1 using
the same samples. We use both Model 1 (with and
without sparsification) and Model 2 to compute the
BQ estimates in this problem. We use several differ-
ent sample sizes (number of paths used for gradient
estimation) M = 5j , j = 1, . . . , 20 for the BQ and
MC estimates. For each sample size, we run the MC
and BQ estimators 104 times, and then take the av-

8Here, each path consists of 41 elements, 21 states
x0, . . . , x20 and 20 actions a0, . . . , a19.
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Figure 1. Results for the LQR using Model 1 without spar-
sification. Shown are the MSE of the MC and BQ estimates
of the first (left column) and second (right column) compo-
nents of the gradient as a function of the number of sample
paths M in linear (top row) and logarithmic (bottom row)
scales.

erage. The true gradient is estimated using MC with
107 sample paths, for comparison purposes.

Figure 1 shows the mean squared error (MSE) of the
MC and BQ gradient estimates for different sample
sizes in both linear (top row) and logarithmic (bottom
row) scales. Figure 2 shows the mean and variance
(over 104 runs) of the MC and BQ gradient estima-
tions for different sample sizes. Note that although
in the first row of Figure 2 the mean of the MC esti-
mate is better than the mean of the BQ estimate for
the small sample sizes (5 and 10), the MSE of the MC
estimate is still worse than the MSE of the BQ esti-
mate (Figure 1). This is due to the higher variance of
the MC estimates shown in the bottom row of Figure
2. Figure 3 shows the mean absolute angular error of
the MC and BQ estimates of the gradient for several
different sample sizes. The absolute angular error is
the absolute value of the angle between the true gra-
dient and the estimated gradient. For these figures,
the BQ gradient estimate was calculated using Model
1 without sparsification.

Figures 4, 5, and 6 show the mean squared error, the
mean and the variance of the gradient estimates, and
the mean absolute angular error for the BQ and MC
estimation methods, when the BQ gradient estima-
tion is computed using Model 1 with sparsification.
As seen in these figures, sparsification slightly reduces
the performance of the BQ gradient estimation. How-
ever, it makes the BQ method much faster and more
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Figure 2. Results for the LQR using Model 1 without spar-
sification. Shown are the mean and variance of the MC and
BQ estimates of the first (left column) and second (right
column) components of the gradient as a function of the
number of sample paths M .
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Figure 3. Results for the LQR using Model 1 without spar-
sification. Shown is the mean absolute angular error of the
MC and BQ gradient estimations as a function of the num-
ber of sample paths M .

efficient, especially for large sample sizes. To give an
intuition about the speed and the efficiency attained
by sparsification, we should mention that the dimen-
sion of the feature space for the kernel used in Model
1 is 6 (Proposition 9.2 in Shawe-Taylor & Cristian-
ini, 2004). Therefore, we deal with a kernel matrix of
size 6 with sparsification versus a kernel matrix of size
M = 5j , j = 1, . . . , 20 without sparsification.

0 20 40 60 80 100
0

0.5

1

1.5

2
x 10

5

Number of Paths

M
ea

n 
S

qu
ar

ed
 E

rr
or

 1

 

 

MC
BQ

0 20 40 60 80 100
0

2

4

6
x 10

4

Number of Paths

M
ea

n 
S

qu
ar

ed
 E

rr
or

 2

 

 

MC
BQ

0 20 40 60 80 100
10

2

10
4

10
6

Number of Paths

M
ea

n 
S

qu
ar

ed
 E

rr
or

 1

 

 

MC
BQ

0 20 40 60 80 100
10

0

10
5

Number of Paths

M
ea

n 
S

qu
ar

ed
 E

rr
or

 2

 

 

MC
BQ

Figure 4. Results for the LQR using Model 1 with sparsi-
fication. Shown are the MSE of the MC and BQ estimates
of the first (left column) and second (right column) compo-
nents of the gradient as a function of the number of sample
paths M in linear (top row) and logarithmic (bottom row)
scales.
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Figure 5. Results for the LQR using Model 1 with sparsi-
fication. Shown are the mean and variance of the MC and
BQ estimates of the first (left column) and second (right
column) components of the gradient as a function of the
number of sample paths M .
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Figure 6. Results for the LQR using Model 1 with spar-
sification. Shown is the mean absolute angular error of
the MC and BQ gradient estimations as a function of the
number of sample paths M .

Figures 7, 8, and 9 show analogous results for Model
2 without sparsification. As usual the mean squared
error, the mean and the variance of the gradient es-
timates, and the mean absolute angular error for the
BQ and MC estimation methods are shown in these
figures.
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Figure 7. Results for the LQR using Model 2 without spar-
sification. Shown are the MSE of the MC and BQ estimates
of the first (left column) and second (right column) compo-
nents of the gradient as a function of the number of sample
paths M in linear (top row) and logarithmic (bottom row)
scales.

We now add i.i.d. Gaussian noise to the reward func-
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Figure 8. Results for the LQR using Model 2 without spar-
sification. Shown are the mean and variance of the MC and
BQ estimates of the first (left column) and second (right
column) components of the gradient as a function of the
number of sample paths M .
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Figure 9. Results for the LQR using Model 2 without spar-
sification. Shown the mean absolute angular error of the
MC and BQ gradient estimations as a function of the num-
ber of sample paths M .

tion

rt = x2
t + 0.1a2

t + nr ; nr ∼ N (0, σ2) ; σ2 = 0.1

In Model 2, we model this by the measurement noise
covariance matrix Σ = Tσ2I, where T = 20 is the
path length in this problem. Since each reward rt is a
Gaussian random variable with variance σ2, the return
R(ξ) =

∑T−1
t=0 rt will also be a Gaussian random vari-

able with variance Tσ2. Figures 10, 11, and 12 show
the mean squared error, the mean and the variance of
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the gradient estimates, and the mean absolute angular
error for the BQ (Model 2 without sparsification) and
MC estimation methods for this problem.
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Figure 10. Results for the LQR when the reward function
is corrupted by an i.i.d. Gaussian noise using Model 2
without sparsification. Shown are the MSE of the MC
and BQ estimates of the first (left column) and second
(right column) components of the gradient as a function
of the number of sample paths M in linear (top row) and
logarithmic (bottom row) scales.
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Figure 11. Results for the LQR when the reward function
is corrupted by an i.i.d. Gaussian noise using Model 2 with-
out sparsification. Shown are the mean and variance of the
MC and BQ estimates of the first (left column) and second
(right column) components of the gradient as a function of
the number of sample paths M .

The experiments of this section indicate that the per-
formance of the MC gradient estimate improves as 1

M
,
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Figure 12. Results for the LQR when the reward function
is corrupted by an i.i.d. Gaussian noise using Model 2
without sparsification. Shown is the mean absolute angular
error of the MC and BQ gradient estimations as a function
of the number of sample paths M .

where the performance of the BQ gradient estimate
improves at a higher rate.

5.2.2. Policy Optimization

In this section, we use Bayesian policy gradient (BPG)
to train the parameters of the LQR problem. Figure
13 shows the performance of the BPG algorithm with
the regular (BPG) and the natural (BPNG) gradient
estimates, versus a MC-based policy gradient (MCPG)
algorithm, for sample sizes M = 5, 10, and 40. M is
the number of sample paths used by these methods for
estimating the gradient of a policy. We use Algorithm
2 with the number of updates set to N = 100, and
Model 1 without sparsification for the BPG and BPNG
methods. Since Algorithm 2 computes the Fisher in-
formation matrix for each set of policy parameters, the
estimate of the natural gradient is provided at little ex-
tra cost at each step. The returns obtained by these
methods are averaged over 104 runs for sample sizes 5
and 10, and over 103 runs for sample size 40. The pol-
icy parameters are initialized randomly at each run. In
order to ensure that the learning algorithms cannot ex-
ceed an acceptable parameter range, the policy param-
eters are defined as c = −1.999 + 1.998/(1 + eν1) and
σ = 0.001 + 1/(1 + eν2). Thus, the policy parameter
vector becomes θ = (ν1 , ν2)

>. The optimal solution
is c∗ ≈ −0.92 and σ∗ = 0.001 (ηB(c∗, σ∗) = 0.1003)
corresponding to ν∗

1 ≈ −0.16 and ν∗
2 → ∞.

Table 2 summarizes the learning rates used in the ex-
periments of this section. We use two different learn-
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Figure 13. This figure compares the average expected re-
turns of a Bayesian policy gradient algorithm using regu-
lar (BPG) and natural (BPNG) gradient estimates, with
the average expected return of a MC-based policy gradient
algorithm (MCPG) for three different sample sizes.

ing rates for the two components of the gradient. For
a fixed sample size, each method uses a fixed learning
rate vector, and the learning rates are not tuned dur-
ing a trial. We tried many learning rates and those
in Table 2 yielded the best performance. The selected
learning rates for BPNG are significantly larger than
those for BPG and MCPG as shown in Table 2. This
explains why BPNG initially learns faster than BPG
and MCPG, but eventually performs worse. We be-
lieve that this can be fixed by suitably reducing the
learning rates during the execution of the algorithm.
We leave this to future work.

MCPG BPG BPNG
M = 5

`

0.01 0.05
´ `

0.01 0.07
´ `

0.05 0.5
´

M = 10
`

0.05 0.1
´ `

0.09 0.1
´ `

0.1 0.7
´

M = 40
`

0.1 0.15
´ `

0.1 0.4
´ `

0.8 0.9
´

Table 2. Learning rates used by the policy gradient algo-
rithms in the experiments of this section.

Figure 13 shows that the MCPG algorithm performs
better than the BPG algorithm only for very small
sample size (M = 5). This phenomenon is also re-
ported in Rasmussen and Ghahramani (2003). How-
ever, the experiments of Section 5.2.1 indicate that
the BQ method performs better than the MC method
even for very small sample size M = 5. Thus, we be-
lieve that using a suitable learning rate schedule, the
BPG algorithm can perform better than the MCPG
algorithm even for very small sample sizes.

6. Discussion

In this paper we proposed an alternative approach
to conventional frequentist policy gradient estimation
procedures, which is based on the Bayesian view. Our
algorithms use GPs to define a prior distribution over
the gradient of the expected return, and compute the
posterior, conditioned on the observed data. The ex-
perimental results shown here are encouraging, but we
conjecture that even higher gains may be attained us-
ing this approach. This calls for additional theoretical
and empirical work.

Although the policy updating algorithm proposed here
(Algorithm 2) uses only the posterior mean of the gra-
dient in its updates, we hope that more elaborative al-
gorithms can be devised that would make judicious use
of the covariance information provided by the gradi-
ent estimation algorithm (Algorithm 1). Two obvious
possibilities are: 1) risk-aware selection of the update
step-size and direction, and 2) using the variance in a
termination condition for Algorithm 1.

Other interesting directions include 1) investigating
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other possible partitions of the integrand in the expres-
sion for ∇ηB(θ) into a GP term f and a known term
p, 2) using other types of kernel functions, such as se-
quence kernels, 3) combining our approach with MDP
model estimation, to allow transfer of learning between
different policies, 4) investigating methods for learn-
ing the Fisher information matrix, 5) extending the
Bayesian approach to Actor-Critic type of algorithms,
possibly by combining Bayesian policy gradient with
the Gaussian process temporal difference (GPTD) al-
gorithms of Engel et al. (2003); Engel et al. (2005).

Acknowledgments

We would like to thank Rich Sutton and Dale Schu-
urmans for helpful discussions. M.G. would like to
thank Shie Mannor for his useful comments at the
early stages of this work. M.G. is supported by iCORE
and Y.E. is partially supported by an Alberta Ingenu-
ity fellowship.

References

Aleksandrov, V., Sysoyev, V., & Shemeneva, V.
(1968). Stochastic optimization. Engineering Cy-

bernetics, 5, 11–16.

Bagnell, J., & Schneider, J. (2003). Covariant policy
search. Proceedings of the International Joint Con-

ference on Artificial Intelligence.

Baxter, J., & Bartlett, P. (2001). Infinite-horizon
policy-gradient estimation. Journal of Artificial In-

telligence Research, 15, 319–350.

Berger, J., & Wolpert, R. (1984). The likelihood princi-

ple. Institute of Mathematical Statistics, Hayward,
CA.

Bertsekas, D., & Tsitsiklis, J. (1996). Neuro-dynamic

programming. Athena Scientific.
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