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Abstract

What kind of strategies subjects follow in various behavioral circumstances has been a central issue in decision making. In
particular, which behavioral strategy, maximizing or matching, is more fundamental to animal’s decision behavior has been a
matter of debate. Here, we prove that any algorithm to achieve the stationary condition for maximizing the average reward
should lead to matching when it ignores the dependence of the expected outcome on subject’s past choices. We may term this
strategy of partial reward maximization ‘‘matching strategy’’. Then, this strategy is applied to the case where the subject’s
decision system updates the information for making a decision. Such information includes subject’s past actions or sensory
stimuli, and the internal storage of this information is often called ‘‘state variables’’. We demonstrate that the matching strategy
provides an easy way to maximize reward when combined with the exploration of the state variables that correctly represent the
crucial information for reward maximization. Our results reveal for the first time how a strategy to achieve matching behavior is
beneficial to reward maximization, achieving a novel insight into the relationship between maximizing and matching.
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Introduction

How do animals, including humans, determine appropriate

behavioral responses when their behavioral outcomes are

uncertain? Decision-making is a fundamental process of the brain

for organizing behaviors, and depends crucially on how subjects

have been rewarded in their past behavioral responses. Mecha-

nism of reward-driven learning has extensively been studied

theoretically and experimentally. A well-known example includes

the reinforcement learning theory based on the temporal

difference (TD) error algorithm[1], which is powerful enough to

solve difficult problems in machine control and accounts for the

basal-ganglia activity representing reward expectancy in monkeys

and humans[2–4]. It is generally considered that subjects attempt

to choose a behavioral policy that will maximize the amount of

reward under a given environmental condition [5]. In addition,

many algorithms in machine learning and other brain-style

computations aim at reward maximization or, somewhat more

generally, optimization of a given cost function.

Nevertheless, animals often exhibit matching behavior in a

variety of decision-making tasks[6–9], even if such behavior does

not necessarily maximize reward. The matching law states that the

frequency of choosing an option is proportional to the amount of

past reward obtained from that option[6]: Na/(N1+N2+…+Nn) = Ia/

(I1+N2+…+Nn), where Na (a = 1,…,n) represents the times option a

has been chosen and Ia the total amount of income obtained at the

option. A typical example showing this law is the alternative choice

task, in which subjects have to choose one from the two options that

may be rewarded at different average rates. Matching and

maximizing are mathematically equivalent in simple tasks[10,11],

but not in arbitrary tasks[12–15].

Decision-making models to reproduce the matching behavior

have been proposed[9,16,17], and recent computational studies

pointed out possible origins of matching behavior in biological

neural systems[18,19]. For instance, a recent model proposed that

the matching law results from the covariance learning rule in

synaptic plasticity[19]. In addition, we previously demonstrated

that the matching law emerges in a class of the reinforcement

learning systems including the actor-critic[20,21], which has

widely been used in engineering applications. However, whether

matching and maximizing share a common computational

principle and whether matching behavior is beneficial to decision

making remain unclear. In this study, we propose a view that

unifies matching behavior into the general computational

framework of reward maximization.

Results

We first prove that partial maximization of reward leads to

matching behavior irrespective of the mathematical algorithm

used for this computation. A crucial step is to define ‘‘the matching

strategy’’ that plays a central role in the present study. We then

demonstrate how the matching strategy substitutes for the

maximizing strategy in a decision-making task that is difficult to

solve, when matching is combined with an appropriate utilization

of available information sources.

Matching as a Sub-optimal Maximizing Strategy in
Independent Choice Behaviors

The analysis is easier if we express the matching law as

follows[8]:

Na~0, orSr aj T~
I1zI2z . . . zIn

N1zN2z . . . zNn

~SrT for Na=0, a~1, � � � ,n
ð1Þ
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where Æræ is the average reward per choice from all options and

Ær|aæ the average reward conditioned on choice of option a. We

can derive the above expression from the relationship Ia>Ær|aæNa.

Thus, the matching law equalizes the expected returns on all the

options that are chosen sufficiently many times. Note that the

matching law should not be confused with ‘‘probability match-

ing’’[22], which states that the frequency of choosing option a is

proportional to Ær|aæ rather than Ia. Probability matching is

typically observed in a task in which each expected return Ær|aæ is

fixed and independent of subject’s behavior (i.e., concurrent

variable-ratio schedules). In such a simple task, the maximizing

behavior satisfies the matching law, but not the probability

matching. Hereafter, we focus on the matching law. Moreover, we

consider the case where subjects make choices at fixed intervals.

We can employ the discrete time steps without much loss of

generality, since the framework describes a free-response task on

continuous time if the interval is sufficiently short and choosing

nothing is an available option.

We analyze the outcome of the decision process without

specifying the detail of neural decision system. To this end, we

assume a set of ‘synapses’ w = (w1, w2, …, wm) that determines the

behavioral policy to make decision. These variables are often

called ‘‘policy parameters’’ in mathematical models of decision

making. Then, the probability of choosing option a is given as a

function pa(w) of the synaptic weights. To ensure a smooth search

for an optimal set of choice probabilities, we require that arbitrary

infinitesimal changes of {pa(w)} allowed in the space of choice

probabilities can be caused by some set of infinitesimal changes

{dwj}.

With the above definitions, we can describe the average reward

per choice as SrT~
Pn

a~1 Sr aj Tpa wð Þ. Many decision-making

algorithms attempt to maximize Æræ by modifying behavioral

outputs. Whatever algorithm is used, the synaptic weights to

maximize Æræ should satisfy the stationary condition hÆræ/hwj = 0

for arbitrary j, i.e.,

Xn

a~1

Sr aj T
Lpa wð Þ

Lwj

z
Xn

a~1

pa wð Þ LSr aj T
Lwj

~0, for Vj: ð2Þ

The first term contains the explicit dependence of the choice

probability on wj, whereas the second term the possible change in

Ær|aæ generated implicitly by the change in subject’s behavioral

policy. The conditional expectation value Ær|aæ is obtained by

taking an average over all possible patterns of past choices in

which the newest choice is option a. In general, the reward

probability depends not only on the current choice, but also on the

history of the past choices[6,12–15]. In such a case, Ær|aæ depends

on the choice probabilities that produced the past choices, and

hence depends on wj.

In order to maximize reward, the brain has to explore the

correct dependence of the reward probability on the past choices.

It seems, however, difficult to infer this dependency correctly with

little knowledge on an accurate model of the environment. In such

a difficult situation, the brain may simply omit the second term in

Eq. 2 in its practical attempt to maximize reward,

Xn

a~1

Sr aj T
Lpa wð Þ

Lwj

~0, for Vj: ð3Þ

Multiplying Eq. 3 by arbitrary variations {dwj} and taking a

summation over j gives
Pn

a~1 Sr aj Tdpa wð Þ~R:dp wð Þ~0, where

dpa(w);Sj(hpa/hwj)dwj represents the infinitesimal change caused

by {dwj}, and R;(Ær|1æ, Ær|2æ, …, Ær|næ) and dp(w);(dp1(w),

dp2(w), …, dpn(w)) are vectors in the space of multiple options. If all

options have non-vanishing stationary choice probabilities, the

probability changes dp(w) may occur in an arbitrary direction that

satisfies the probability conservation 1:dp wð Þ~d
Pn

a~1 pa wð Þ
� �

~0, where 1;(1, 1, …, 1) is an n-dimensional identity vector.

Therefore, the conditions R?dp(w) = 0 and 1?dp(w) = 0 can

simultaneously be satisfied only by such R that is parallel to 1. If

the stationary choice probability vanishes for some option, pa = 0,

we can forbid the changes in this direction (dpa = 0), and R should

have identical components for all the options exhibiting non-zero

choice probabilities. These results and Eq. 1 imply that the

truncated stationary condition given by Eq. 3 is equivalent to the

matching law.

Thus, the steady choice behavior exhibits matching when the

decision system ignores the influence of subject’s past choices on

the expected outcome in aiming for the stationary condition of

reward maximization. Hereafter, we call this suboptimal maximi-

zation strategy to achieve Eq. 3 ‘‘matching strategy’’. By contrast,

we call the strategy to directly solve Eq. 2 ‘‘the maximizing

strategy’’.

To demonstrate the above relationship between the matching and

maximizing strategies, we study an alternative choice task (n = 2), in

which the expectation value of return on each choice pattern is

specified completely by the subject’s current (at) and most recent

choices (at21) as gatat{1
:Srt at,at{1j T (see Methods). We consider

the case where subject’s current choice is independent of its past

choices. Hereafter, such decision behavior is called ‘‘independent

choice behavior’’. Since p2(w) = 12p1(w), the subject’s decision

system controls only the choice probability p1(w) through w, and

makes every choice with probability p1(w). Then the average return

on the current choice Ært|atæ is obtained by averaging gatat{1
over the

possible patterns at21 = 1,2 as Srt atj T~gat1p1 wð Þzgat2 1{p1 wð Þð Þ,
and hence depends on w through the choice probability p1(w). Since

hÆrt|atæ/hwj?0, the matching strategy does not maximize reward in

this task. Actually, it gives Æræ = 0.25 whereas the maximizing strategy

yields Æræ = 0.45 (Figure 1).

The matching strategy enables us to derive a variety of learning

rules that lead to matching behavior (Supporting Text S1). For

instance, such a category of learning rules includes the well-known

actor-critic in the reinforcement learning theory [1,20,21], direct

actor[23], melioration[16] and local matching[9]. In particular,

the actor-critic and direct actor also belong to the covariance

rule[19]. We numerically solved the decision task analyzed in

Figure 1 to show that all these learning algorithms generate

matching behavior (Figure 2A). By contrast, indirect actor [23]

does not exhibit matching in the steady behavior (Figure 2B). The

indirect actor belongs to Q-learning without state variables[1] (see

below for the state variables). Since Q-learning determines the

choice probabilities by estimating ‘‘action values’’, i.e., the

expected returns on individual options, it does not show matching.

Matching vs. Maximizing over All Possible Choice
Behaviors

The quantitative analysis conducted in Figure 1 was restricted

to the case where the subject generates independent choice

behaviors. It was shown that the maximizing strategy earns better

than the matching strategy. However, the average reward

Æræ = 0.45 achieved by the maximizing strategy in Figure 1 is not

the global maximum, but is only the best one among independent

choice behaviors. For instance, an alternate choice pattern of

1212…, where the current choice depends on the most recent

choice, can earn better (Æræ = (g12+g21)/2 = 0.6) than the best

Reward Maximization, Matching
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independent choice behavior in that task. Thus, to produce a

better outcome in some situation, the subject is required to make

each choice depending on the past choices or other available

information. Below, we investigate the relationship between the

matching and maximizing strategies, taking all possible choice

behaviors into account.

To make the argument as general as possible, we include the

case where the subject may receive sensory signals st before

making a choice at at time t. Then, in a given task, the external and

internal information available for the subject at time t consists of

the histories of sensory signals, subject’s past choices and the past

returns: Ht = (st, rt21, at21, st21, rt22, at22, st22,…). A decision-

making task specifies the conditional probability distribution

P(st+1, rt|at, Ht). In contrast, the general rule to determine

subject’s choice behavior is described by the conditional

probability distribution P(at|Ht). The problem is how to explore

an optimal behavioral policy P̂(at|Ht) to maximize the average

reward Æræ in a given task.

In practice, however, it is difficult to optimize the dependence of

P(at|Ht) on the whole history Ht. Hence, subject’s decision system

Figure 1. Dependences of the expectation values Ær|1æ, Ær|2æ (dot-dashed lines) and Æræ (solid curve) on p1 in a decision task with two
options (Methods). The reward probability is given as a function of the current and most recent choices, but the subject makes each choice
independently of the past choices. The task parameters are set as g11 = 0, g21 = 0.2, g12 = 1 and g22 = 0.4. The expectation values are given as
Ær|aæ = ga1p1+ga2(12p1) and Æræ = Ær|1æp1+Ær|2æ(12p1). The matching (vertical solid line) and maximizing (vertical dashed line) choice probabilities are
obtained as solutions of equations Ær|1æ = Ær|2æ and dÆræ/dp1 = 0 respectively. The matching strategy (Æræ = 0.25) earns less than the maximizing strategy
(Æræ = 0.45) in this task.
doi:10.1371/journal.pone.0003795.g001

Figure 2. Decision behaviors generated by various decision-making systems. The horizontal and vertical axes indicate the cumulative
numbers of choices given to option 1 and 2, respectively. Dashed and solid line segments indicate the slopes corresponding to the maximizing and
matching choice probabilities, respectively. See Methods for details of the algorithms. (A) The actor critic (red), direct actor (magenta), local matching
(blue) and melioration (green) were numerically simulated with b = 4. (B) The Q-leaning was simulated for b = 2, 4, 8, 16, and 32. At b = 32, the system
eventually learns to choose only option 2.
doi:10.1371/journal.pone.0003795.g002

Reward Maximization, Matching
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may extract partial information st from Ht, and restrict the

behavioral policy as

P at H tjð Þ~P at stjð Þ: ð4Þ

We may call the above st ‘‘state variables’’. We assume that the

decision system controls the definition of state st, Ht¨st, and

P(at|st). In order to maximize the average reward, the decision

system has to adopt an appropriate definition of state with which

an optimal behavioral policy P̂(at|Ht) satisfies Eq 4. It has been

proved [24] that if a map Ht¨st satisfies

P stz1,�rt at,stjð Þ~P stz1,�rt atj ,H tð Þ, ð5Þ

for a given task, then the maximal average reward can be obtained

by a behavioral policy that satisfies Eq. 4. The average reward

obtained by an arbitrary choice sequence can be expressed by

P(st+1, rt|at, st) that satisfies Eq. 5 and does not depend on the

variables that are not reflected in s. Therefore, state s that satisfies

Eq. 5 represents crucial information about reward delivery in that

task. The above theorem means that the optimal policy P̂(at|Ht)

depends on only the crucial information. Hereafter, we may say

that a definition of state variables, Ht¨st, is correct if and only if

st satisfies Eq. 5. Note that the selection of the correct definition

may not be unique.

Suppose that the decision system adopts a certain definition of

state variables, Ht¨st. Let pas = P(at = a|st = s) be the choice

probability with which the decision system in state s chooses

option a. Each state-dependent choice probability is determined as

a function of the synaptic weights pas(w). In order to explore all

possible patterns of state-dependent choice probabilities smoothly,

we assume that an arbitrary pattern of {pas} and an arbitrary

direction of infinitesimal changes {dpas} allowed in the space of

probabilities can be expressed by some pattern of w and some

direction of infinitesimal changes dw, respectively (see Methods).

Taking the state dependence into account, the average reward is

written as Æræ =SsSaÆr|a,sæ pas(w)P(s), where Ær|a, sæ is the average

reward conditioned on choice of option a in state s, and P(s) is the

distribution of the states that the subject has visited over

sufficiently many decision trials with fixed {pas(w)}. The stationary

condition for reward maximization hÆræ/hwj = 0 is written as

X
s,a

Sr a,sj TP sð Þ Lpas

Lwj

zSr a,sj Tpas
LP sð Þ
Lwj

zP sð Þpas
LSr a,sj T

Lwj

� �

~0, for Vj:

ð6Þ

The maximizing strategy attempts to achieve Eq. 6 taking the

whole dependence on w into account. In contrast, as in the

previous case, the matching strategy ignores the dependence of the

expected outcome of the current choice on w in aiming for the

stationary condition. The outcome in the present case consists of

the return rt and the next state st+1. Therefore, the matching

strategy ignores the dependence of P(st+1, rt|at, st) on w, and hence

ignores hÆr|a, sæ/hwj and hP(s9|a, s)/hwj, where P(s9|a,

s);P(st+1 = s9|at = a, st = s). By transforming the second term

repetitively with the recursive relation P(s9) =Ss,aP(s9|a,s)

pas(w)P(s) and by setting hÆr|a, sæ/hwj = hP(s9|a, s)/hwj = 0, we

obtain the stationary condition of the matching strategy (Support-

ing Text S2):

X
s,a

P sð Þ Lpas

Lwj

lim
T??

1

T

XT

t’~0

Xt’

t~0

Srtzt j at~a,st~sT{SrTð Þ

~0, for Vj:

ð7Þ

Note that the terms omitted in the matching strategy differ for

different definitions of the state. Then, using Eq. 7 and the

probability conservation, we can extend the matching law to the

case of state-dependent choice behaviors (Supporting Text S2):

pas~0

or lim
T??

1

T

XT

t’~0

Xt’

t~0

Srtztjat~a,st~sT{Srtzt st~sj Tð Þ~0,

for Va,s:

ð8Þ

The extended matching law given as Eq. 8 depends also on the

definition of the state.

We schematically illustrate the relationships between the

maximizing and matching strategies with correct and incorrect

definitions of the state variables (Figure 3A). The horizontal plane

represents the multi-dimensional space of arbitrary choice

behaviors. Defining state variables restricts the state-dependent

choice behavior to a certain subspace. If state variables are

correctly defined to satisfy Eq.5, the subspace (red curve) includes

the optimal choice behavior (red circle). The conditional

probability P(st+1, rt|at, st) takes a fixed value specified by the

task, which is actually independent of w. Therefore, the matching

strategy coincides with the maximizing strategy, which indeed

earns the globally maximal average reward (red triangle) unless the

choice behavior is trapped by a local stationary point. In contrast,

if an incorrect definition of state variables is chosen, the set of

generable choice behaviors (blue curve) does not necessarily

include the optimal choice behavior. Therefore, the maximizing

strategy can lead to only the best choice behavior (blue triangle)

within the restricted set. The conditional probability P(st+1, rt|at,

st) depends on the past choices that are not reflected in state st,

and hence depends on w. Therefore, the matching strategy (blue

cross) in general deviates from the maximizing one (blue triangle).

To explain the above results, we conduct numerical simulations

of a simple alternative task in which the reward probability is given

as a function of the current and most recent two choices (at, at21,

at22) (see Methods). A correct definition of state variables for

making choice at is st = (at21, at22). An actor-critic system (see

Methods) operating on the correct state variables earns the

globally maximal average reward (Figure 3B, red dashed line). In

contrast, for an incorrectly defined state, such as st = at21 or no

state variable, the best average rewards (magenta and blue dashed

lines, respectively) are smaller than the globally maximal one, and

the average rewards earned by the actor-critic systems operating

on the incorrect state variables (magenta and blue curves) are still

smaller.

Thus, the matching strategy is as efficient as the maximizing one

if they are combined with a mechanism to explore and select a

correct definition of state variables. However, the matching

strategy in general deviates from the maximizing one for the

choice behaviors restricted by an incorrect definition of state

variables.

Reward Maximization, Matching
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Discussion

How subjects decide behavioral responses based on their

experience and reward expectancy is a current topic in neurosci-

ence. In particular, which choice behavior, matching or maximiz-

ing, is more fundamental in decision making has long been debated.

The relationship between matching and maximizing behaviors has

been often discussed in the restricted case where every choice is

independent of the past choices. For instance, Loewenstein and

Seung [18] recently proved for independent choice behaviors that

the maximizing behavior is achieved by synaptic learning rules that

cancel out the infinite sum of the covariances between the current

return and all of the current and past decision-related neural

activities, and that the matching behavior appears when only the

first term in the sum, i.e., the covariance between the current return

and current decision-related neural activity, vanishes. This

relationship corresponds to the relationship between Eqs. 2 and 3

when the choice probabilities are described as

pa wð Þ~ebwa
�P

a0 e
bwa0 (Supporting Text S1). This study has

further extended their results to derive a more general statement:

any attempt to achieve the stationary condition for reward

maximization results in matching behavior if it ignores the influence

of the past choices on the expected outcome. This result depends on

neither a specific leaning algorithm nor a specific reward schedule.

Most importantly, we have clarified the general relationship

between matching and maximizing strategies among all the possible

choice behaviors. We have proved that the matching strategy can

lead to the optimal choice behavior when the subject’s decision

system correctly discovers the information sources sufficient to specify

the expected outcome, and can utilize the information through state

variables. Differences between the matching and maximizing

strategies can arise when the decision system assigns incorrect

information sources to the state variables. Our results for the first time

revealed how a strategy to achieve the matching behavior is beneficial

to reward maximization, and how the ignorance of the relevant

information leads to the matching behavior.

The information sources relevant to the expected outcome are

task-dependent. In realistic situations, the subject would have no a

priori knowledge about the probabilistic rule of the outcomes of

their behavioral responses. It seems unlikely that the brain easily

identifies the relevant information sources from infinitely many

combinations of the histories of past sensory inputs, returns and

choices. This might explain why the matching law appears so

robustly in various animal species and in various decision-making

tasks as a result of ignorance of the relevant information sources.

In contrast, the matching strategy with the incorrect selection of

information sources may replicate various deviations from the

matching behavior, such as the under/over-matching observed in

various situations [25–28]. Our results provide a theoretical

framework to investigate the deviations from matching on the basis

of selected information sources. How the brain explores the

relevant information sources remains open for further studies.

Since this ability of the brain is what discriminates it from any

existing artificial machine with human-like adaptive behavior,

clarifying the underlying mechanism is an exciting challenge in

neuroscience and its application to robotics.

Methods

Summary of assumptions
Our proof of matching law (Eq. 3) is valid for a wide class of

natural learning rules, including those employing a widely-used

soft-max function for choice probabilities (see below). In the

following, however, we explicitly describe the assumptions

necessary to make our proof mathematically rigorous. For

decision-making tasks, we assumed 1) discrete time step t at which

the subject is required to make decision, 2) a finite number of fixed

options (a = 1, 2, …, n) available for the subject at every time step,

and 3) a scalar amount of reward given to the subject at every time

step. For the decision system, we required the following

assumptions: 4) the decision system can control the definition of

state st and the state-dependent choice probabilities {pas} through

a set of synapses w = (w1, w2, …, wm), 5) it adopts a definition of

state st with which the number of possible states is finite (l), and 6)

on a certain definition of state, an arbitrary pattern of possible

{pas} and an arbitrary direction of possible infinitesimal changes

Figure 3. Relationship between the maximizing and matching strategies for state-dependent decision-making. (A) The performance
of the matching and maximizing strategies based on correctly (red) or incorrectly (blue) defined state variables is shown schematically. (B) Actor-critic
systems (Methods) were trained on a decision task in which the subject’s current and most recent two choices, at, at21 and at22, specify the reward
probability according to the following task parameters: g111 = 0, g211 = 0.6, g121 = 0.9, g221 = 1, g112 = 1, g212 = 0.6, g122 = 1, and g222 = 0 (Methods).
Curves and dashed lines display the local temporal averages of the rewards earned by the actor-critic systems and the best average rewards
obtainable by the maximizing strategy, respectively, in three cases: no state variable (blue); an imperfect state variable st = at21 (magenta); correct
state variables st = (at21, at22) (red).
doi:10.1371/journal.pone.0003795.g003

Reward Maximization, Matching
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{dpas} can be expressed by some w and dw, respectively. The

assumption 6 requires the following condition:

V yas yasw0 Va,s, and
Xn

a~1
yas~1 Vs

���n o
,

Aw s:t: yas~pas wð Þ Va,s, J(w) exists, and rank J wð Þ½ �~l n{1ð Þ
ð9Þ

where q(w) represents the ln-dimensional vector function consist-

ing of the state-dependent choice probabilities {pas(w)}, and J(w) is

the Jacobian matrix of q(w): Jij(w) = hqi(w)/hwj. Equation 9

requires m$l(n21). Independent choice behaviors are generated in

the case l = 1.

Decision-making task for demonstrations
To examine the performance of the matching and maximizing

strategies, we introduced a decision-making task in which reward

is given (rt = 1) or not given (rt = 0) to the subject according to the

probability determined by the subject’s current (at) and most recent

one or two choices (at21 and at22). Each choice should be taken

from one of two options (a = 1, 2), although it is straightforward to

extend the present results to more general tasks with more than

two options. The conditional expectation value of return on each

choice pattern is given as a task parameter: gatat{1
:Srt at,at{1j T

or gatat{1at{2
:Srt at,at{1,at{2j T. The values of these parameters

are given in figure legends. For given task parameters {gatat{1at{2
},

we can calculate the maximum of the average reward Æræ =

Sa,a9,a0gaa9a0paa9a0P(a9,a0), where paa9a0 is the conditional choice

probability paa9a0;P(at = a|at21 = a9, at22 = a0), and P(a9, a0) is the

probability distribution P(a9, a0);P(at21 = a9, at22 = a0) obtained as

a solution of equation P(a,a9) =Sa0paa9a0P(a9,a0). The best average

rewards obtainable by the restricted choice behaviors with state-

definition st;at21 and no state variable can be calculated by

restricting paa9a0 as paa91 = paa92 = paa9 and pa1 = pa2 = pa, respectively.

Learning rules for independent choice behaviors
Synapse-updating rules can be described by change Dwj in wj at

time t, wj(t+1) = wj(t)+Dwj(t). Melioration[16] proposes to increase the

choice probability of the option that has the largest expectation value

of return. An implementation of melioration is described as

p1(w) = w0, p2(w) = 12w0, Dw0 = a(w12w2) and Dwa~

adaat
rt{wað Þ, where a is a positive constant, and daat

~1 if at = a,

and daat
~0 otherwise. The average returns Ær|1æ and Ær|2æ are

estimated as w1 and w2, and the choice probabilities are determined

by w0 updated by the estimated average returns. Local matching[9] is

designed to directly achieve the matching law as

pa wð Þ~wa

�Pn
a0~1 wa0 and Dwa~a daat

rt{wað Þ. For actor-crit-

ic[1], direct actor[23] and Q-learning[1], we used a soft-max function

as each choice probability: pa wð Þ~ebwa
�Pn

a0~1 ebwa0 , where b is a

positive constant. Individual updating rules are described as

Dwa~abaat
rt{uð Þ and Du = a(rt2u) (actor-critic),

Dwa~art daat
{pað Þ (direct actor) and Dwa~adaat

rt{wað Þ (Q-

learning). The details of the algorithms and the relations to the

matching strategy and the covariance rule[19] are discussed in

Supporting Text S1.

Actor-critic model with state variables
An iterative method to achieve Eq. 7 was shown in [29,30].

Assuming a set of synapses corresponding to individual options in

individual states {was} and defining the choice probabilities in each

state as pas wð Þ~ebwas
�Pn

a0~1 ebwa0s , we can obtain the stochastic

gradient ascent rule for Eq. 7 as ÆDwasæ = lbP(s)pas(Qas2Vs), where l is

a positive constant, and Qas: lim
T??

1
T

PT
t0~0

Pt0
t~0

Srtzt at~a,jð

st~s:T{SrTÞ and Vs;SaQaspas represent the relative values of

choosing a in state s (relative action-value) and of state s (relative

state-value), respectively. Using the relations P sð ÞpasQas~
Sdsst

daat
rt{SrTzVstz1

� �
T and P sð ÞpasVs~Sdsst

daat
Vst

T, we can

obtain the actor-critic model as an implementation of the matching

strategy:

Du~a rt{uð Þ,
Dvs~adsst

rt{uzvstz1
{vs

� �
,

Dwas~lbdsst
daat

rt{uzvstz1
{vs

� �
,

8><
>: ð10Þ

where dsst
~1 if st = s, and dsst

~0 otherwise. The variable u

estimates the average reward and the variable ns represents the state-

value of s estimated with the temporal difference (TD) error

algorithm. While the actor-critic system is usually designed for

maximizing a discounted sum of future rewards[1], the updating rule

in Eq. 10 was derived to maximize the average reward[24,29,30].

Numerical simulations
In the simulations shown in Figures 2 and 3B, model parameters

were set as a = lb = 0.05, and the initial values of all dynamical

variables were set to 1. The value of b was set as b = 4 by default,

while it was varied for the Q-learning simulations (Figure 2B). To

show the time evolution of reward in Figure 3B, we updated the

local average y according to Dy = (rt2y)/200 from an initial value

of 0.64, which is the average reward obtained with even choice

probabilities: p1 = p2 = 0.5.

Supporting Information

Text S1 Strategies of different learning rules. Several well-known

learning algorithms are categorized into the matching, maximizing

and other strategies.

Found at: doi:10.1371/journal.pone.0003795.s001 (0.19 MB

DOC)

Text S2 Matching strategy in state-dependent choice behaviors.

The extensions of the stationary condition and the matching law

are derived.

Found at: doi:10.1371/journal.pone.0003795.s002 (0.19 MB

DOC)
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