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Abstract

In this paper we investigate human exploration/exploitation be-
havior in sequential-decision making tasks. Previous studies
have suggested that people are suboptimal at scheduling ex-
ploration, and heuristic decision strategies are better predictors
of human choices than the optimal model. By incorporating
more realistic assumptions about subject’s knowledge and lim-
itations into models of belief updating, we show that Bayesian
models of human behavior for the Multi-Armed Bandit Prob-
lem (MAB) on experimental data perform better than previous
accounts.
Keywords: Human sequential decision making; Explo-
ration/exploitation; Bayesian modeling; Multi-armed Bandit
Problem; Gittins index

Introduction
Sequential decision-making in uncertain environments form
an important class of problems in which the agent must si-
multaneously learn about the environment while choosing
among uncertain alternatives to gather reward. Balancing
these demands is called the exploration/exploitation trade-
off, because of the conflicting desires for maximizing infor-
mation (i.e., exploration) and maximizing reward (i.e., ex-
ploitation). Bayesian optimal solutions to this problem are
notoriously intractable (Lusena, Goldsmith, & Mundhenk,
2001). However, humans engage in sophisticated sequen-
tial decision-making behavior in everyday life. The ability
to perform correct decisions has high-impact in the quality
of life. Good decision-makers may correctly choose prod-
ucts, services, job, and retirement plans. On the other hand,
bad decision-makers may not foresee risks and develop ad-
dictions, gambling problems, or obsessions. However, it re-
mains relatively unknown how people explore and exploit and
whether human behavior is near-optimal, in part due to the
lack of optimal solutions for comparison .

The Multi-Armed Bandit Problem (MAB) offers a good
opportunity to test human sequential decision-making given
its simplicity and widely-known optimal solution through
the Gittins Index. In MAB problems, at each decision time
the decision-maker must select one of several potentially
reward-generating processes (called arms) defined over inde-
pendent state spaces. Selecting an option changes the state
and stochastically generates a reward with unknown proba-
bility. The key requirements for a MAB problem are that the

options are independent from each other, and that the states
of unplayed arms are frozen until played again.

Only a small number of previous studies have investigated
human decision making for MAB problems, and have gener-
ated mixed results. Earlier studies suggested human choices
reflect inaccurate Bayesian updating with suboptimalities in
exploration–different studies found under-exploration (Meyer
& Shi, 1995; Horowitz, 1973), over-exploration (Ander-
son, 2001) and both (Banks, Olson, & Porter, 1997). Re-
cently, Gans, Knox, and Croson (2007) looked at the pre-
dictive performance of a large class of optimal and heuris-
tic choice mechanisms and found human choice behavior is
best predicted by a simple choice heuristic. The compos-
ite picture suggested by these studies is that human explo-
ration/exploitation behavior is non-optimal and perhaps based
on non-Bayesian decision-making. One of the critical dif-
ficulties with this conclusion is that the Bayesian updating
used by the optimal comparison model contains unrealistic
assumptions if used as a model for human belief-updating. In
particular, people do not have infinite memory, infinite look
ahead, nor precise encoding of reward and outcome events. In
addition, it is unclear whether humans adopt the assumption
that unplayed arms have frozen states in these experiments.

The purpose of this paper is to compare human perfor-
mance on MAB problems with models of belief-updating
that better reflect human abilities. In particular, we compare
belief-update models based on Bernoulli reward processes,
Normal reward processes with known variance, and Normal
reward processes with unknown variance to human choice be-
havior. We compute Gittins Indices with limited memory and
look ahead, and test their ability to predict human choices
over a variety of 2-arm, 3-arm, and 4-arm bandit problems.
We compare the performance of our models against the best
predictive models found in Gans et al. (Gans et al., 2007).
We find that a belief-update model that estimates the mean
and variance of the reward process with limited memory and
look ahead model provides the best predictive performance.

Modeling beliefs in MAB problems
In MAB problems, selecting arm i at time k generates a re-
ward xi

k. Our aim is to construct a action selection policy
that maximizes the expected total discounted future reward



x0 + γx1 + γ2x2 + . . . , where γ (0 ≤ γ < 1) is a discounting
factor that allows the infinite sum to converge. Given that
the nature of the arm is unknown, we say the arm is at a be-
lief state π. For most common reward processes, this state is
represented by the sufficient statistics of the reward dynam-
ics. We utilize this state to model the probabilistic transi-
tion p(πk+1|πk,xk) between states and the expected reward
p(xk|πk). In building the policy, if we select arm i at a time
t steps in the future, we expect a reward γtr(πk+t), where
r(π) = E [x|π] is the expected reward of state π, and E is the
expectation operator. Thus, MAB problems are special cases
of Markov Decision Processes, and hence have an associated
Bellman equation (Bellman, 1957) that can be solved in prin-
ciple via dynamic programming. However, Gittins (Gittins,
1989) proved that the solution to MAB problems takes the
form of an index for each arm, called the Gittins Index, and
that the optimal action at each decision time is to pull the arm
with highest index.

The Gittins Index
The virtue of Gittins’ solution is that only information from
a particular arm’s dynamics is required to compute that arm’s
index. Moreover, the solution has a number of interpretations
that help clarify how an optimal decision-maker schedules ex-
ploratory and exploitative moves. In particular, the Gittins In-
dex for an arm i can be viewed as an optimal value function
for playing only that arm, that encodes the ratio between the
expected reward if the arm is pulled until a best time τ− 1
(a stopping time), divided by the total discounted time up to
τ−1. More precisely,

νi(πi) = sup
τ>0

Eπi

[
τ−1

∑
t=0

γ
tr(πi

t)

]/
Eπi

[
τ−1

∑
t=0

γ
t

]
(1)

= (1− γ) sup
τ>0

Eπi

[
τ−1

∑
t=0

γ
tr(πi

t)

]/
(1−Eπi [γτ]). (2)

Thus at each choice point the optimal decision maker assesses
the maximal reward rate (per unit discounted future time) ex-
pected for each arm.

The solution has an interpretation in terms of exploration
bonuses. For a given arm, rename the numerator and de-
nominator in equation (2) by Rτ(π) and W τ(π), respectively.
Let τ∗−1 denote an optimal stopping time. The exploration
bonus exceeds its expected reward payoff by

(1− γ)
1−W τ∗(π)

W τ∗(π)
Rτ∗(π).

The term (1− γ) converts discounted reward into the undis-
counted reward the agent expects to receive, because the Git-
tins Index (1) is defined in terms of the rate undiscounted ex-
pected reward is accrued. By dropping it, we recover the ex-
pected value Rτ∗(π)/W τ∗(π), which is more commonly used
in classical dynamic programming literature (Bellman, 1957).

Using the fact that discounting is equivalent to a probabil-
ity that a reward process will terminate, Sonin (Sonin, 2007)
showed that W τ(π) could be interpreted as the probability of
reward termination within time τ−1. Thus, the Gittins index
gives a bonus to arms it believes will survive the time τ∗−1.
We believe this provides an important consideration for com-
puting near-optimal solutions. A near-optimal agent should
compute both the expected reward for an arm, and maintain
an estimate of the reliability of the arm’s payoff. Our modifi-
cations of the optimal solution are motivated by the idea that
humans may be estimating the reliability of each arm’s pay-
off using strategies that are suboptimal for the experimentally
imposed task.

Modeling human belief updates Because previous inves-
tigations of human behavior in MAB problems have almost
exclusively focused on Bernoulli reward processes, we had
our observers choose between Bernoulli arms that generated
sequences

{
xi

1,x
i
2, . . . ,x

i
n
}

of independent and identically-
distributed random values taking either R, with R ∈ [0,100]
fixed, or 0 with probability θ, and 1−θ, respectively. Without
lost of generality, we develop our analysis with R equals 1. It
is easy to see that for any R∈R, the Bernoulli reward process
index ν(π,R) of a state π is equal to R×ν(π,1), where ν(π,1)
is the index for R = 1.

To compute Gittins index using the calibration method.
This method calibrates an arm by comparing it with a stan-
dard bandit process, which has one state and a constant re-
ward λ. The method works by finding the supremum amount
of reward λ such that we would be indifferent on whether to
play the standard arm or the calibrated arm. For a given arm,
the model assumes the xis are drawn from a parametric distri-
bution indexed by θ with a density function f (· |θ). The prior
density for θ is denoted by π. The base for the calibration
process is the Bellman equation rewritten as:

U(λ,π) = max
[

λ

1− γ
,r(π)+ γ

Z
U(λ,πx) f (x|π)dx

]
, (3)

where πx denotes the posterior π(θ|x), and f (·|π) =R
f (·|θ)π(θ)dθ. We solve equation (3) for different values of

λ as π varies throughout the family of posterior distributions.
Note that when both arguments are equal inside the brackets
in (3) for certain λ, the Gittins index is λ.

Although this an infinitely recursive equation, the influ-
ence of a h-nested equation is diminished by O(γh). Thus,
the procedures to compute the indices are extremely accurate
approximations. In particular, we employ the methods de-
scribed in (Gittins, 1989) until a horizon of h = 2000 when
an “infinite” recursion is required.

To simulate human choice data in our experiments, we
compute Gittins indices for a set of models that are Bayesian
but differ from the generating model. We introduced three
belief models: the optimal model based on the generating
process, and two other models that simulate inaccuracy in the
belief. These inaccurate models are Gaussian approximations
to the Beta-Bernoulli model, which is the optimal. One model



estimates θ assuming a standard deviation, and the other esti-
mate both. It is important to notice that all models enjoy pos-
terior consistency (Diaconis & Freedman, 1986). Namely, as
more reward is observed, the posterior of each model will al-
most surely converge to an infinitesimal neighborhood around
the true parameter θ. The Gaussian models would potentially
take longer to converge though. However, we believe it is
easier –and even more natural– to adopt a belief about θ that
is symmetric like the Gaussian because it allows to separately
estimate the standard deviation and the mean. Also, the op-
timal belief for a Bernoulli reward, a Beta distribution, has a
complicated shape and both the mean and standard deviation
are intricately related.

Bernoulli reward process: For a Bernoulli reward pro-
cess, we will have a prior over θ as a Beta distribution with a
density in the interval [0,1]

Γ(α+β)
Γ(α)Γ(β)

θ
α−1(1−θ)β−1,

where α > 0 and β > 0, and the prediction

f (x|α,β) =

{
β

α+β
if x = 0

α

α+β
if x = 1

The state may be completely represented by α and β. The
reward is

r(α,β) =
Z 1

0
θ

Γ(α+β)
Γ(α)Γ(β)

θ
α−1(1−θ)β−1 dθ =

α

α+β
.

Therefore, the calibration equation (3) becomes

U(λ,α,β) =

max
[

λ

1− γ
,

α[1+ γU(λ,α+1,β)]+βγU(λ,α,β+1)
α+β

]
(4)

Normal reward process with unknown mean and
known variance: Here, the reward function follows a nor-
mal distribution with unknown mean, but known variance σ2.
The state may be completely represented by the mean x̄ and
size n of the sample.

Fortunately, the normal reward process has a location and
scale parameter behavior, represented by the mean and stan-
dard deviation, respectively. This means that the calibration
equation and therefore the Gittins Index can be computed for
any mean and standard deviation by translating and scaling
the results from a previous computation. Because of this, the
convenient following properties hold

U(bλ+ c,bx̄+ c,bσ) = c(1− γ)−1 +bU(λ, x̄,n,σ), (5)

where b > 0,c ∈ R, and

ν(x̄,n,σ) = x̄+σν(0,n,1). (6)

Without lost of generality, we assume a known variance
σ2 = 1, and therefore leave the true mean µ as the only un-
known parameter. We take π0 as the improper uniform den-
sity over all the real line and f (x|µ) as the normal distribution

N(µ,1). The density for a new value x is

f (x|x̄,n) =
(

n
2π(n+1)

)1/2

exp
{
− n

2(n+1)
(x− x̄)2

}
,

and

r(x̄,n) =
Z

∞

−∞

x f (x|x̄,n)dx = x̄.

Thanks to (5) and (6), we only need to solve the following
calibration equation for x̄ = 0 to find any other index

U(λ,0,n) =

max
[

λ

1− γ
, x̄+ γ

Z
∞

−∞

U(λ− x
n+1

,0,n+1) f (x|0,n)dx
]

Normal reward process with unknown mean and vari-
ance: In this case, the unknown parameters are the mean µ
and the standard deviation σ. We choose a convenient im-
proper prior π0 ∝ 1/σ, with σ > 0. The density function
f (x|µ,σ) will be the normal distribution N(µ,σ).

The state of the process can be fully characterized by the
sample mean x̄, standard deviation s, and size n. The resulting
prediction is

f (x|x̄,s,n) ∝

(
1+

n
n+1

(x− x̄)2

(n−1)s2

)−n/2

,

where s2 is the unbiased sample variance, and the expected
reward r(x̄,s,n) = x̄.

Similarly to (5) and (6) (Gittins, 1989), the following prop-
erty ν(x̄,s,n) = x̄ + sν(0,1,n) holds. Therefore, the calibra-
tion method is simplified to

U(λ,0,1,n) =

max
[

λ

1− γ
, x̄+ γ

Z
∞

−∞

sxU(
λ− x

sx(n+1)
,0,1,n+1) f (x|0,1,n)dx

]
,

where sx = (n−1(n−1)s2 +(n+1)−1(x− x̄)2)1/2.

Restricting the memory and look ahead for
computing the Gittins Index

The problem with previous accounts of Gittins Index as a
model for human behavior is that they assume infinite mem-
ory and look ahead. Here, we show how more appropriate
models with limited memory and future inference can be eas-
ily derived from the original Gittins Index.

We model limited memory by assuming that subjects keep
in memory the last m reward observations to infer the belief
of a state. Note, we assume subjects do not build their beliefs
from the entire reward history, but rather use a limited history
of rewards. We incorporate the idea of limited memory in
an additional step performed before the Gittins index is com-
puted. This step consists of building up the state of the arm
from the last m observations as

πk(θ|x1,x2, . . . ,xm) = π0(θ)
m

∏
i=1

f (xi|θ), (7)



with π0(θ) being fixed. Thereafter, the Gittins Index is com-
puted as before, using the limited memory state πk.

Additionally, we can easily incorporate a limited look
ahead in the computation of the Gittins Index by allowing
a maximum of h steps in the recursive computation. We use
the following modified calibration equation

U(λ,π,h) =

max
[

λ

1− γ
,r(π)+ γ

Z
U(λ,πx,h−1) f (x|π)dx

]
(8)

when h > 0, and U(λ,πx,0) = S(λ,πx), and

S(λ,π) = max

[
λ

1− γ
,

∞

∑
t=0

γ
tr(π)

]
(9)

= max [λ,r(π)]/(1− γ) (10)

is a myopic expected future reward based on current state π.
Bernoulli Reward Process: After observing the sequence

x1,x2, . . . ,xn, we can limit the memory by plugging the den-
sity function f (xi|θ) = θxi(1 − θ)1−xi into (7) and consid-
ering only the subsequence xn−m,xn−m+1, . . . ,xn. If there
are n0 occurrences of 0 and n1 occurrences of 1 in this
subsequence, the state of the process new state of the pro-
cess is α = n1 + 1 and β = n0 + 1. To restrict the look
ahead, we use the modified calibration (8) with S(λ,α,β) =
max

[
λ,α(α+β)−1

]
/(1− γ).

Normal reward process with unknown mean and known
variance: We restrict the memory by considering the last m
elements of the reward sequence x1,x2, . . . ,xn, and therefore
we change the state of the process (x̄,n) to (ȳ,m + 1), where
ȳ = ∑

n
i=n−m xi(m + 1)−1. We restrict the look ahead by us-

ing S(λ, x̄,n) = max [λ, x̄] (1− γ)−1. The parameters x̄0 and
σ0 denote the prior belief about mean and standard deviation,
respectively.

Normal reward process with unknown mean and variance:
Similarly to the normal reward process with known vari-
ance, we change the state (x̄,s,n) to (ȳ,s2,m + 1), where
s2 = ∑

n
i=n−m (xi − ȳ)2 (m + 1)−1. We restrict the look ahead

by using S(λ, x̄,s,n) = max [λ, x̄] (1− γ)−1.

Experiments
We test five paid subjects (graduate students, averaging 29
years old) on 10 2-arm, 20 3-arm, and 30 4-arm bandit prob-
lems. The payoff configurations were random samples from
{0.2, . . . ,0.8}, the rewards drawn from the interval [0,100],
and discount is factor 0.98. To better compare the models
ability to predict subjects data, the payoff configurations and
the stopping times of each problem was the same for all sub-
jects, but were randomly presented.

We emphasized to subjects that each arm has a non-zero
probability of payoff and that it remains static throughout
each game. We described that a game may suddenly stop after
any pull with 2% probability. We told them that the probabil-
ity of stopping does not increase within a game, but that to

Figure 1: Game screenshot

survive the n-th pull they need to have survived all the previ-
ous pullings. Additionally, we show to subjects the quantile
of people that survive until the 20, 40, 60, 80, 100, 200, and
300-th pull, which is 66.7%, 44.5%, 29.7%, 19.8%, 13.2%,
1.75%, and 0.23%, respectively.

Each arm is shown in the screen as a slot machine. Sub-
jects pull a machine by pressing a key in the keyboard. When
pulled, an animation of the lever is shown, 200 msec later the
reward appears in the machine’s screen, and a sound mimick-
ing dropping coins lasts proportionally to the amount gath-
ered. No sooner than 1 secs, the subject can pull again.

A machine has several cues, some redundant, to help sub-
jects keep track of previous rewards. At the top, the machine
shows the number of pulls, total reward, and average reward
per pull so far. The machine’s screen changes the color ac-
cording to the average reward, from red (zero points), through
yellow (fifty points), and green (one hundred points). The
machine’s total reward is shown as a pile of coins underneath
it

The total score and total pulls within a current game is
shown at the bottom of the screen. The total score throughout
the games is shown at the top-right. Additionally, a ranking
with the score of the other players is shown to the left. A
typical game with two arms is shown in Figure 1.

Model fitting and performance evaluation
We fit the data using the Gittins Index assuming that the sub-
ject considers the process to be Bernoulli, or Normal.

Other models for comparison Additionally, we compare
the performance of the proposed models with the two best
models from Gans, Knox, and Croson (Gans et al., 2007).

Exponential Smoothing: Exponential Smoothing is a sim-
ple model of for belief updating that discounts earlier sam-
ple information in favor of the most recent sample using a
weighting factor ξ, where 0 < ξ < 1. Beliefs about the value
of the reward are initialized to a prior e0. After each reward
xn at time n, the exponential smoother updates an estimate
of the value of the arm using en = ξxn + (1− ξ)en−1. It is



an appropriate model for agents that believe the environment
is changing, because it correctly considers that early reward
information has less influence in the current estimate of ex-
pected reward.

Hot Hand: The Hot Hand, a model that captures subjects
beliefs in performance streaks, is a simple heuristic model
that has shown to be surprisingly good at modeling human
behavior in Bernoulli trials. In the 2-arm problem, the hot
hand model switches arms after an unsuccessful pull. We can
relax the 1-pull rule by allowing a tolerance of k losses. It is
important to notice that the Hot Hand model is not an index:
it does not assign a number to each arm. We assign an index
1 to the arm that is played by Hot Hand and 0 to all others.
If the last k pulls are losses, then the model will switch to a
different, random arm.

Performance Evaluation Assuming subjects have perfect
internal discrimination between their indices, our observation
of their decisions contains noise from unobservables in mea-
surements, and proxy or instrumental variables. Hence, our
decision analysis has a random component that may be mod-
eled by a probability function. We assume a common analy-
sis of event histories in which the random noise is i.i.d. dis-
tributed according to a double exponential distribution (Gum-
bel distribution) (Allison, 1982).

Instead of counting how many times the model chooses the
arm that the subject effectively pulls (i.e., the times it cor-
rectly assigns the highest index to it), the Gumbel distribution
over a subject decision boils down to a logistic distribution for
the model response (Gans et al., 2007). This logistic distribu-
tion can be interpreted as how likely the model’s decision is
with respect to the subject’s.

At each decision time, a model ν will assign an index to
each arm. Let π1,π2, . . . ,πl be the states of the arms after
interaction with a subject. Let ν(π1),ν(π2), . . . ,ν(πl) be the
indices assigned to arms by the model ν. Finally, likelihood
of a model decision given subject’ decision z is

exp{ην(πz)}
∑

l
j=1 exp{ην(π j)}

. (11)

This model response measure adds an additional level of
hypotheses across a subset of decisions to construct a frame-
work for nested hypothesis testing. This new nested spaced
is characterized by the parameter η (with 0 < η < ∞). This
allowed us to assess the performance of a model while ac-
counting for the variability either across subjects or within
subjects. From this likelihood (11), we can easily build an
aggregate log likelihood for the full set of decisions. Equiv-
alently, we use the negative log-likelihood (nLL) to evaluate
model performance.

To account for the complexity of a model, we utilize BIC
and cross validation. The BIC measure (Bayesian hypoth-
esis testing (Kass & Raftery, 1995)) penalizes the nLL by
the number of free parameters (d) using the formula BIC =
2×nLL+d× ln(n), where n is the size of the dataset. Cross

validation (CV) is a common statistical procedure that parti-
tions the data into subsets such that the data used to fit the
model are in one subset and the data to test it are in another.
We use 10-fold cross validation with nLL as the performance
measure.

For nLL, BIC, and CV, we search for the best model’s pa-
rameters for given set of decisions in two steps. First, we
discretize the parameter coarsely to find candidate parameter
values. Second, we search for an η using non-linear opti-
mization such that the nLL is minimized. We did not find any
significant difference in our conclusions when η was fit across
subjects or within subjects. The results reported consider one
η for all subjects.

Results
The dataset consists of 18098 decisions spanned over 3228
decisions for 2-arm problems, 5873 decisions for 3-arm prob-
lems, and 8997 decisions for 4-arm problems. Table 1 details
the models performance.

Exponential smoothing best fits subjects decisions on 2-
arm problems, which is consistent with the literature. No-
tably, our limited Gittins index for Bernoulli with unlimited
memory (subject should have a clear idea of the average pay-
off) and 2-step look ahead outperforms the popular Hot Hand
heuristic. However, the optimal Gittins index (not shown
in the table) is worse than Hot Hand at modeling subject
choices, confirming previous results that simple strategies are
more predictive of human choices than the optimal 2-armed
bandit strategy.

Interestingly, on 3-arm and 4-arm problems, our limited
Gittins index with Normal reward and known variance out-
performs all other models, although the exponential smoother
remains viable. The predictive performance of the Normal
reward and known variance may result from its ability to rep-
resent key limitations in human sequential decision-making.
In particular, we think subjects encode reward feedback with
noise, which is not captured by a binary model reward model.
However, subjects may be aware of the noise in their encod-
ing process, consistent with the poor performance of the Git-
tins index with normal reward and unknown variance. The
unknown variance model keeps very high index to arms with
few samples, even though subjects should get a clear idea of
payoff using only one successful sample. Note that without
limited memory and limited lookahead, the modified Gittins
index models would not account for subject’s decisions.

Conclusions and future work
The good performance of the Normal reward process with
known variance suggests that people may perform approx-
imate Bayesian inference with limited memory and look
ahead. As the Bernoulli reward process is actually the true
process underlying the experiment, optimal performance re-
quires that subjects know both the generating process and re-
ward process a priori. Rather than attribute failures of the
Bernoulli model to poor exploration/exploitation, we show



Table 1: Performance of models under 10-fold cross val-
idation using negative log-likelihood (CV), negative log-
likelihood (nLL), and BIC. The best parameters for each
model according to BIC are shown in parenthesis.

Set of Data

Performance measure 2 arms 3 arms 4 arms All

Exponential Smoothing

CV 1983 4019 6025 12021

nLL 2002 4038 6044 12067

BIC (e0 = 0,ξ = 0.1) 4020 8093 12106 24153

Hot Hand

CV 3093 6196 9291 18558

nLL 3098 6201 9296 18612

BIC (k = 1) 6204 12410 18601 37233

Gittins Index Bernoulli Process

CV 2382 4794 7194 14293

nLL 2392 4804 7204 14350

BIC (m = ∞,h = 2) 4800 9625 14426 28719

Gittins Index Normal Process with known variance

CV 1993 3992 5986 12026

nLL 1996 3995 5989 12029

BIC (x̄0 = 0,s = 10,m = 4,h = 3) 4024 8024 12014 24097

Gittins Index Normal Process with unknown variance

CV 3462 6959 10394 20860

nLL 3478 6975 10410 20876

BIC (x̄0 = 0,m = 3,h = 3) 6980 13976 20847 41781

that it is important to correctly configure the Bayesian mod-
els so that they reflect subject’s prior understanding of the
task and their capabilities. Obviously, a larger-scale experi-
ment needs to be performed, involving more arms and payoff
configurations that better target distinctions between update
models.

There is one important deviation from MAB optimality in
human decision making we did not model: a relaxation of
the ”frozen state” assumption for unplayed arms. Faced with
making decisions in a bandit problem, people may entertain
the hypothesis that unplayed arms may change states. Ban-
dit problems that allow state changes on non-selected arms
are termed “Restless bandit” problems, for which only ap-
proximate solutions are known to exist (Whittle, 1988; Mora,
2001). Recently, Daw et al. (Daw, O’Doherty, Dayan, Sey-
mour, & Dolan, 2006) performed a brain imaging study while
subjects made choices between restless bandits. Although op-
timality was not tested, their subject’s choices were well fit by
a model that used a Kalman filter to track estimates of each
arm’s reward value, suggesting subjects may have changed
their beliefs about unplayed arms at each decision time. Fu-
ture work will target whether subject’s belief updating also
involve estimating the stability of the reward processes while
unplayed.
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